Archives

Hexadecimal Sudo-Kube puzzle



I have constructed the following puzzle based on a 4x4x4 Eastsheen cube. It is labelled with hexadecimal digits 0,1,2,...,9,A,B,C,D,E,F on each face of each cubbie (I have turned the labels at an angle of 45 degrees to avoid having positional information due to label orientations). The goal of the puzzle is to have each label eaxctly once per face and once per row (in all 3 dimensions). This is the only constraint that must be satisfied. It seems possible that a single puzzle has more than one valid solved configuration, but I have not fund more than one so far. I wrote a computer program which generates the instance to be solved "randomly" and outputs the labelling of a scrambled puzzle. This last step is necessary to avoid knowing the solved configuration which would reduce the puzzle to returning each cubbie to its correct place... The puzzle is really difficult because the solved configuration is not known !!!

Pattern Sub-Groups

I've been fooling around with symmetric Rubik cube patterns: "Cross" patterns, involving corners only; "Check" patterns, involving edges only; and "Dots" patterns, involving edges and corners.

By rotating the eight corners a quarter turn about one of the cube axes a cube state with a cross on four faces is produced. A second such state may be produced by rotating about a different cube axes:

    R U B R U R D R U' D B' U' B' D' B' R' D' B'
    R B D R B R F R B' F D' B' D' F' D' R' F' D'

By recursively forming binary products from these two generators a group of 24 cube states is produced composed of all the different pure cross patterns plus the identity element. This Cross group is composed of five conjugate classes: