Archives

Cubic Symmetry Cycle Representations

In responding to comments to a previous post it became of interest to represent cube states and cubic symmetry elements as facelet permutations in disjoint cycle form appropriate for GAP. I wrote a routine to dump facelet representations in disjoint cycle form and produced a table of the cubic symmetry group in cycle notation. It occured to me that this table might be of use to readers of this forum.

I number the cube facelets in the order they occur in the Singmaster-Reid identity configuration string:

     12 34 56 78 90 12 34 56 78 90 12 34 567 890 123 456 789 012 345 678
     UF UR UB UL DF DR DB DL FR FL BR BL UFR URB UBL ULF DRF DFL DLB DBR

The Up facelet of the Up-Front cubie is numbered 1 on through to the Right facelet of the Down-Back-Right cubie which is numbered 48. With this numbering the face turns are represented by the permutations: