Archives

Cross-Check Patterns

By applying the 24 rotation symmetries to the corner facelets of the cube one may generate the Cross Pretty Pattern Group. These patterns may be arranged into five conjugate classes: the identity cube, six order two 6-cross patterns, eight order 3 6-cross patterns, six order 4 4-cross patterns and three order 2 4-cross patterns.

By applying the 24 Th symmetries to the edge facelets of the cube one may generate the Check (or Checkerboard ) Pretty Pattern Group. These patterns may be arranged into six conjugate classes: the identity cube, pons asinorum, eight order three 6-check patterns, eight order six 6-check patterns, three order two 4-check patterns and three order two 2-check patterns.

The Fifteen Puzzle can be solved in 43 "moves"

Of course, it had been previously proved that some positions of the Fifteen Puzzle require 80 moves to solve, but in that work it was assumed that a move only affects one tile at a time. Since people commonly slide up to 3 tiles in the same row or column at once, it seems natural to count such an action as a single move. With this way of counting, which we call the "multi-tile metric," the maximum number of required moves is only 43, and of the 16!/2 = 10,461,394,944,000 valid configurations of the puzzle, there are only 16 antipodes, i.e., positions that actually require 43 moves.

The 16 antipodes include two positions that are mirror-symmetric to themselves. These two positions are those that are obtained by transposing the rows and columns with respect to either diagonal. The other antipodes consist of 7 pairs of positions that are mirror-symmetric with the other. These 14 positions also include 4 pairs of neighboring positions. So only 8 of the antipodes are "strict" antipodes having the property that any move gets you one move closer to the solved state.