Archives

Classification of the symmetries and antisymmetries of Rubik's cube

In 2005, Mike Godfrey and me computed the number of of essentially different cubes regarding the 48 symmetries of the cube (group M) and the inversion, see here for details.
We used the Lemma of Burnside to find this number. Since then I wondered if it would be possible to confirm this number by explicitly analyzing all possible symmetries/antisymmetries of the cube.