Archives
The Void Cube to 13q
Submitted by B MacKenzie on Fri, 10/03/2014 - 19:12.Breadth First Enumeration 2014-09-27 19:58:23.094 VoidCubeClient[508:5903] 0 1 1 2014-09-27 19:58:23.095 VoidCubeClient[508:5903] 1 1 12 2014-09-27 19:58:23.099 VoidCubeClient[508:5903] 2 5 114 2014-09-27 19:58:23.101 VoidCubeClient[508:5903] 3 17 1,068 2014-09-27 19:58:23.105 VoidCubeClient[508:5903] 4 130 9,951 2014-09-27 19:58:23.133 VoidCubeClient[508:5903] 5 1,018 92,592 2014-09-27 19:58:23.333 VoidCubeClient[508:5903] 6 9,204 860,852 2014-09-27 19:58:25.033 VoidCubeClient[508:5903] 7 83,789 7,991,856 2014-09-27 19:58:40.300 VoidCubeClient[508:5903] 8 774,323 74,114,319 2014-09-27 20:01:03.984 VoidCubeClient[508:5903] 9 7,159,250 686,774,712 2014-09-27 20:25:47.908 VoidCubeClient[508:5903] 10 66,273,224 6,360,091,030 Coset Enumeration Void Cube Model 1.0 Group: R, U, F, TR, TU, TF Coset Base Subgroup: Subgroup with solved corner cubies and the UF and UR cubies in the solved position regardless of orientation. 484,989,120 cosets of size 7,431,782,400 Coset Symmetry Reduction: Oh+ Cosets solved since launch: 3,429,943 Average time per coset: 0:00:00.068 Server Status: Void Cube Enumerator Server Enumeration to depth: 13 Snapshot: Friday, October 3, 2014 at 6:56:34 PM Central Daylight Time Depth Reduced Elements 0 1 1 1 2 12 2 18 114 3 50 1,068 4 447 9,951 5 2,008 92,592 6 19,000 860,852 7 124,184 7,991,856 8 1,136,806 74,114,319 9 9,028,936 686,774,712 10 82,411,850 6,360,091,030 11 711,657,402 58,868,124,048 12 6,507,640,604 544,562,369,684 13 58,275,341,089 5,033,855,951,932 Sum 65,587,362,397 5,644,416,382,171 484,989,120 of 484,989,120 cosets solved Elapsed Time: 0:12:14:50
This work was performed using the <R, U, F, TR, TU, TF> group model. This model was discussed in a previous thread. It must be pointed out here that the <R, U, F, TR, TU, TF> metric is exactly the same as the <R, U, F, L, D, B> metric since TR = L , TU = D and TF = B on the void cube. It makes no difference if the left face is rotated holding the rest of the cube rigid or if the left face is held rigid and the rest of the cube is rotated in the opposite direction, the rearrangement of the cubies is the same. If a distinct state of the void cube is at say depth 13 in the <R, U, F, TR, TU, TF> metric it will be at depth 13 in the <R, U, F, L, D, B> metric.
» 4 comments | read more