Archives
Gear cube extreme can be solved in 25 moves
Submitted by Ben Whitmore on Thu, 02/15/2018 - 23:07.Write the puzzle as the group <R,F,U,D> where R and F are 180 degree moves. We use a two-phase algorithm to first reduce the state of the puzzle to the subgroup <R3,F3,U,D>, and then finish the solve in the second phase. The subgroup <R3,F3,U,D> is the group of all positions where all of the gears are oriented, because R3 is the same as R' except the gear orientation remains unchanged.
The first phase is easy to compute. There are only 3^8 = 6561 positions because each gear has only 3 different orientations, despite having 6 teeth.
Phase 1 distribution:
The first phase is easy to compute. There are only 3^8 = 6561 positions because each gear has only 3 different orientations, despite having 6 teeth.
Phase 1 distribution:
Depth New Total 0 1 1 1 4 5 2 8 13 3 78 91 4 102 193 5 1064 1257 6 920 2177 7 3576 5753 8 592 6345 9 216 6561 10 0 6561The second phase is harder. The number of positions is 24*8!^2/2 = 19,508,428,800, since it turns out that the permutation of the 3 unfixed edges on the E slice is completely determined by the permutation of the centres. This phase was solved with a BFS and took around 7 and a half hours to complete.