God's Algorithm out to 17q*
Submitted by tscheunemann on Wed, 07/14/2010 - 15:25.
Well it's done. Here are the results in the Quarter Turn Metric for positions at exactly that distance:
d (mod M + inv)* mod M + inv mod M positions -- --------------- --------------- --------------- ----------------- 0 1 1 1 1 1 1 1 1 12 2 5 5 5 114 3 17 17 25 1068 4 135 130 219 10011 5 1065 1031 1978 93840 6 9650 9393 18395 878880 7 88036 86183 171529 8221632 8 817224 802788 1601725 76843595 9 7576845 7482382 14956266 717789576 10 70551288 69833772 139629194 6701836858 11 657234617 651613601 1303138445 62549615248 12 6127729821 6079089087 12157779067 583570100997 13 57102780138 56691773613 113382522382 5442351625028 14 532228377080 528436196526 1056867697737 50729620202582 15 4955060840390 4921838392506 9843661720634 472495678811004 16 46080486036498 45766398977082 91532722388023 4393570406220123 17 426192982714390 423418744794278 846837132071729 40648181519827392And since this is probably the last result in the Quarter Turn Metric for some time (say at least a year) for reference the same for positions up to that distance
d (mod M + inv)* mod M + inv mod M positions -- --------------- --------------- --------------- ----------------- 0 1 1 1 1 1 2 2 2 13 2 7 7 7 127 3 24 24 32 1195 4 159 154 251 11206 5 1224 1185 2229 105046 6 10874 10578 20624 983926 7 98910 96761 192153 9205558 8 916134 899549 1793878 86049153 9 8492979 8381931 16750144 803838729 10 79044267 78215703 156379338 7505675587 11 736278884 729829304 1459517783 70055290835 12 6864008705 6808918391 13617296850 653625391832 13 63966788843 63500692004 126999819232 6095977016860 14 596195165923 591936888530 1183867516969 56825597219442 15 5551256006313 5513775281036 11027529237603 529321276030446 16 51631742042811 51280174258118 102560251625626 4922891682250569 17 477824724757201 474698919052396 949397383697355 45571073202077961*The first column is again the number of symmetry reduced positions but only considering the symmetry of the coset which is a fixed edge cube position.
As expected the calculation went without problems with only one hiccup (24 of the biggest cosets wouldn't fit in a single node). To get further than that I would certainly need a bigger computer. Memory is one problem but that could be addressed by using less cores or by using cores in parallel to calculate a single coset. CPU time is the other problem. For a community effort the problem is still to big. PCs with 16 GByte RAM are out there but still not to commonplace.
My 15f* calculation is well underway. I have already done the 210000 biggest cosets, without any memory problems and the rest is only a question of time. But that again in the Full Turn Metric will be it for the time being.