C3v Three Face Group
In a previous thread the C3v Three Face Group (RUF group, etc.) was discussed. I have since been fooling around with the group and tried my hand at writing a coset solver for it. I thought I might report some results from this.
Here are the states at depth enumerations for the three face edges only group and the three face corners only group:
C3v Three Face Edges Group: States at Depth
Depth Elements Total 0 1 1 1 6 7 2 27 34 3 120 154 4 534 688 5 2,348 3,036 6 10,197 13,233 7 43,248 56,481 8 177,961 234,442 9 699,190 933,632 10 2,522,257 3,455,889 11 7,816,541 11,272,430 12 18,734,750 30,007,180 13 29,090,523 59,097,703 14 24,157,966 83,255,669 15 8,791,122 92,046,791 16 844,938 92,891,729 17 5,542 92,897,271 18 9 92,897,280
C3v Three Face Corners Group: States at Depth
Depth Elements Total 0 1 1 1 6 7 2 27 34 3 120 154 4 534 688 5 2,256 2,944 6 8,969 11,913 7 33,058 44,971 8 114,149 159,120 9 360,508 519,628 10 930,588 1,450,216 11 1,350,852 2,801,068 12 782,536 3,583,604 13 90,280 3,673,884 14 276 3,674,160
Partitioning the group along these lines, I put together a solver for the cosets of the corners group and have performed a states at depth enumeration out to depth 18:
C3v Three Face Group: States at Depth
Depth Elements log( n ) 0 1 0.00 1 6 0.78 2 27 1.43 3 120 2.08 4 534 2.73 5 2,376 3.38 6 10,560 4.02 7 46,920 4.67 8 208,296 5.32 9 923,586 5.97 10 4,091,739 6.61 11 18,115,506 7.26 12 80,156,049 7.90 13 354,422,371 8.55 14 1,565,753,405 9.19 15 6,908,670,589 9.84 16 30,422,422,304 10.48 17 133,437,351,006 11.13 18 579,929,251,620 11.76
And below is the distribution found for a set of 10,000 random cubes:
depth count log( n ) 16 3 10.71 17 8 11.14 18 35 11.78 19 158 12.43 20 558 12.98 21 1861 13.50 22 3608 13.79 23 2964 13.70 24 796 13.13 25 9 11.19
The log( n ) column in the last table extrapolates the counts out to the whole group. Taken together the last two tables fairly well delineate the distribution for the group save for the high end tail. In the course of this work I have run across six more depth 26 symmetry equivalence classes in addition to the two superflip homologs mentioned previously, giving all told 45 known depth 26 positions.
C3v three face 26 turn positions
State 1: one of 3 conjugates UF RU BU LU FD RD DB DL RF LF RB BL UFR URB UBL ULF DRF DFL DLB DBR R U R U' R' U F U F' R F' U R F F R R F R' U R' U F' R F' U State 2: one of 6 conjugates FU RU UB LU FD RD DB DL RF LF RB BL UFR URB UBL ULF DRF DFL DLB DBR R R U U F' R' F U' R' F R' F R U U R F' R U' R U R' F' R U' F' State 3: one of 6 conjugates UF UR BU LU FD RD DB DL FR LF RB BL FRU ULF UBL FDR URB DFL DLB DBR R R U F F R' F R' U R' U' R' U' R' U U R' F' R' F R F' U F' U R' State 4: one of 6 conjugates UF UR BU LU FD RD DB DL FR LF RB BL FRU UBL ULF URB LDF BRD DLB FDR R R U R' F R F' U' F F R' F' R' U' F' R' F' U U R U F' R U U F' State 5: one of 6 conjugates UF UR UB LU FD RD DB DL RF LF RB BL RFD BLU BUR ULF RUF DFL DLB DBR R R U U R' F' R' F' R U' R R U' R' F' U F' U U F F U' F U R R State 6: one of 6 conjugates UF UR BU LU FD RD DB DL FR LF RB BL FRU BRD LDF URB FDR LFU DLB LUB R R U F' U R U' R F U' F' R U' F' R' U R R U' F' U R F R' U F' State 7: one of 6 conjugates UF UR BU LU FD RD DB DL FR LF RB BL FRU UBL ULF URB FDR DFL DLB DBR R R U R' U' F F R' F' R U' R R F' R' F' R U F' R U R R U F' R State 8: one of 6 conjugates UF UR BU LU FD RD DB DL FR LF RB BL FRU LDF FDR RBU LUB RDB DLB FUL R R U' R U' R' U F U' R' U' R' U' F' U F R' F F R U R F' R F' R
As I said earlier, I would guess that the depth 26 positions number in the millions and then there are probably a few depth 27 positions to be found.