Cubic Symmetry Cycle Representations
In responding to comments to a previous post it became of interest to represent cube states and cubic symmetry elements as facelet permutations in disjoint cycle form appropriate for GAP. I wrote a routine to dump facelet representations in disjoint cycle form and produced a table of the cubic symmetry group in cycle notation. It occured to me that this table might be of use to readers of this forum.
I number the cube facelets in the order they occur in the Singmaster-Reid identity configuration string:
12 34 56 78 90 12 34 56 78 90 12 34 567 890 123 456 789 012 345 678 UF UR UB UL DF DR DB DL FR FL BR BL UFR URB UBL ULF DRF DFL DLB DBR
The Up facelet of the Up-Front cubie is numbered 1 on through to the Right facelet of the Down-Back-Right cubie which is numbered 48. With this numbering the face turns are represented by the permutations:
R (3,17,11,21)(4,18,12,22)(25,39,46,30)(26,37,47,28)(27,38,48,29) U (1,3,5,7)(2,4,6,8)(25,28,31,34)(26,29,32,35)(27,30,33,36) F (1,20,9,18)(2,19,10,17)(25,35,40,38)(26,36,41,39)(27,34,42,37) L (7,23,15,19)(8,24,16,20)(31,45,40,36)(32,43,41,34)(33,44,42,35) D (9,15,13,11)(10,16,14,12)(37,40,43,46)(38,41,44,47)(39,42,45,48) B (5,22,13,24)(6,21,14,23)(28,48,43,33)(29,46,44,31)(30,47,45,32)
And below are the representations for the 48 cubic group symmetry elements. The symmetries are designated with reference to a set of x, y, z coordinate axes originating at cube center with the x axis pointing Right, the y axis pointing Up, and the z axis pointing Front. The geometric transform of the coordinate axes is given first followed by the Schoenflies symbol for the transform. For example entry 15; z, y,-x C4y , designates a four fold ccw rotation about the y axis. This transform rotates the z axis onto the x axis and the neg x axis onto the z axis. Entry 5; -z, x,-y C3x'y'z , designates a three fold ccw rotation about the vector (-1,-1, 1 ) which rotates the neg z axis onto the x axis, the x axis onto the y axis and the neg y axis onto the z axis. The σh elements are planes of symmetry perpendicular to a four fold axis. The subscript gives the perpendicular axis. The σd elements are planes of symmetry which bisect the angle made by two four fold axes. The subscript gives the two axes bisected. The S elements are rotation-reflection elements. The axis of rotation is given as a subscript in the same manner as for the proper rotation elements. And i is the inversion element.
The Cubic Symmetry Group as Rubik's Cube Facelet Permutations
m Disjoint Cycle Representation 1 x, y, z E ( ) 2 x,-y,-z C2x (1,13)(2,14)(3,11)(4,12)(5,9)(6,10)(7,15)(8,16)(17,21)(18,22)(19,23)(20,24)(25,46) (26,47)(27,48)(28,37)(29,38)(30,39)(31,40)(32,41)(33,42)(34,43)(35,44)(36,45) 3 -x, y,-z C2y (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,23)(18,24)(19,21)(20,22)(25,31) (26,32)(27,33)(28,34)(29,35)(30,36)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48) 4 -x,-y, z C2z (1,9)(2,10)(3,15)(4,16)(5,13)(6,14)(7,11)(8,12)(17,19)(18,20)(21,23)(22,24)(25,40) (26,41)(27,42)(28,43)(29,44)(30,45)(31,46)(32,47)(33,48)(34,37)(35,38)(36,39) 5 -z, x,-y C3x'y'z (1,12,23)(2,11,24)(3,22,6)(4,21,5)(7,18,14)(8,17,13)(9,16,19)(10,15,20)(25,48,32) (26,46,33)(27,47,31)(28,29,30)(34,38,45)(35,39,43)(36,37,44)(40,42,41) 6 y,-z,-x C23x'y'z (1,23,12)(2,24,11)(3,6,22)(4,5,21)(7,14,18)(8,13,17)(9,19,16)(10,20,15)(25,32,48) (26,33,46)(27,31,47)(28,30,29)(34,45,38)(35,43,39)(36,44,37)(40,41,42) 7 z,-x,-y C3x'yz' (1,16,21)(2,15,22)(3,20,14)(4,19,13)(5,8,23)(6,7,24)(9,12,17)(10,11,18)(25,42,47) (26,40,48)(27,41,46)(28,35,45)(29,36,43)(30,34,44)(31,33,32)(37,38,39) 8 -y,-z, x C23x'yz' (1,21,16)(2,22,15)(3,14,20)(4,13,19)(5,23,8)(6,24,7)(9,17,12)(10,18,11)(25,47,42) (26,48,40)(27,46,41)(28,45,35)(29,43,36)(30,44,34)(31,32,33)(37,39,38) 9 -z,-x, y C3xy'z' (1,8,19)(2,7,20)(3,24,10)(4,23,9)(5,16,17)(6,15,18)(11,22,14)(12,21,13)(25,33,41) (26,31,42)(27,32,40)(28,44,39)(29,45,37)(30,43,38)(34,35,36)(46,48,47) 10 -y, z,-x C23xy'z' (1,19,8)(2,20,7)(3,10,24)(4,9,23)(5,17,16)(6,18,15)(11,14,22)(12,13,21)(25,41,33) (26,42,31)(27,40,32)(28,39,44)(29,37,45)(30,38,43)(34,36,35)(46,47,48) 11 z, x, y C3xyz (1,4,17)(2,3,18)(5,12,19)(6,11,20)(7,22,10)(8,21,9)(13,16,23)(14,15,24)(25,27,26) (28,38,36)(29,39,34)(30,37,35)(31,48,41)(32,46,42)(33,47,40)(43,44,45) 12 y, z, x C23xyz (1,17,4)(2,18,3)(5,19,12)(6,20,11)(7,10,22)(8,9,21)(13,23,16)(14,24,15)(25,26,27) (28,36,38)(29,34,39)(30,35,37)(31,41,48)(32,42,46)(33,40,47)(43,45,44) 13 x,-z, y C4x (1,6,13,10)(2,5,14,9)(3,21,11,17)(4,22,12,18)(7,23,15,19)(8,24,16,20)(25,30,46,39) (26,28,47,37)(27,29,48,38)(31,45,40,36)(32,43,41,34)(33,44,42,35) 14 x, z,-y C34x (1,10,13,6)(2,9,14,5)(3,17,11,21)(4,18,12,22)(7,19,15,23)(8,20,16,24)(25,39,46,30) (26,37,47,28)(27,38,48,29)(31,36,40,45)(32,34,41,43)(33,35,42,44) 15 z, y,-x C4y (1,7,5,3)(2,8,6,4)(9,15,13,11)(10,16,14,12)(17,20,23,22)(18,19,24,21)(25,34,31,28) (26,35,32,29)(27,36,33,30)(37,40,43,46)(38,41,44,47)(39,42,45,48) 16 -z, y, x C34y (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,22,23,20)(18,21,24,19)(25,28,31,34) (26,29,32,35)(27,30,33,36)(37,46,43,40)(38,47,44,41)(39,48,45,42) 17 -y, x, z C4z (1,18,9,20)(2,17,10,19)(3,12,15,8)(4,11,16,7)(5,22,13,24)(6,21,14,23)(25,38,40,35) (26,39,41,36)(27,37,42,34)(28,48,43,33)(29,46,44,31)(30,47,45,32) 18 y,-x, z C34z (1,20,9,18)(2,19,10,17)(3,8,15,12)(4,7,16,11)(5,24,13,22)(6,23,14,21)(25,35,40,38) (26,36,41,39)(27,34,42,37)(28,33,43,48)(29,31,44,46)(30,32,45,47) 19 y, x,-z C2xy (1,22)(2,21)(3,4)(5,18)(6,17)(7,12)(8,11)(9,24)(10,23)(13,20)(14,19)(15,16)(25,29) (26,30)(27,28)(31,38)(32,39)(33,37)(34,48)(35,46)(36,47)(40,44)(41,45)(42,43) 20 -y,-x,-z C2xy' (1,24)(2,23)(3,16)(4,15)(5,20)(6,19)(7,8)(9,22)(10,21)(11,12)(13,18)(14,17)(25,44) (26,45)(27,43)(28,42)(29,40)(30,41)(31,35)(32,36)(33,34)(37,48)(38,46)(39,47) 21 z,-y, x C2xz (1,11)(2,12)(3,9)(4,10)(5,15)(6,16)(7,13)(8,14)(17,18)(19,22)(20,21)(23,24)(25,37) (26,38)(27,39)(28,40)(29,41)(30,42)(31,43)(32,44)(33,45)(34,46)(35,47)(36,48) 22 -z,-y,-x C2xz' (1,15)(2,16)(3,13)(4,14)(5,11)(6,12)(7,9)(8,10)(17,24)(18,23)(19,20)(21,22)(25,43) (26,44)(27,45)(28,46)(29,47)(30,48)(31,37)(32,38)(33,39)(34,40)(35,41)(36,42) 23 -x, z, y C2yz (1,2)(3,19)(4,20)(5,10)(6,9)(7,17)(8,18)(11,23)(12,24)(13,14)(15,21)(16,22)(25,36) (26,34)(27,35)(28,41)(29,42)(30,40)(31,39)(32,37)(33,38)(43,47)(44,48)(45,46) 24 -x,-z,-y C2yz' (1,14)(2,13)(3,23)(4,24)(5,6)(7,21)(8,22)(9,10)(11,19)(12,20)(15,17)(16,18)(25,45) (26,43)(27,44)(28,32)(29,33)(30,31)(34,47)(35,48)(36,46)(37,41)(38,42)(39,40) 25 y, x, z σd_xy (1,18)(2,17)(3,4)(5,22)(6,21)(7,12)(8,11)(9,20)(10,19)(13,24)(14,23)(15,16)(25,27) (28,29)(31,48)(32,47)(33,46)(34,38)(35,37)(36,39)(40,42)(43,44) 26 -y,-x, z σd_xy' (1,20)(2,19)(3,16)(4,15)(5,24)(6,23)(7,8)(9,18)(10,17)(11,12)(13,22)(14,21)(25,42) (26,41)(27,40)(28,44)(29,43)(30,45)(31,33)(34,35)(37,38)(46,48) 27 z, y, x σd_xz (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,18)(19,22)(20,21)(23,24)(26,27) (28,34)(29,36)(30,35)(32,33)(38,39)(40,46)(41,48)(42,47)(44,45) 28 -z, y,-x σd_xz' (1,7)(2,8)(3,5)(4,6)(9,15)(10,16)(11,13)(12,14)(17,24)(18,23)(19,20)(21,22)(25,31) (26,33)(27,32)(29,30)(35,36)(37,43)(38,45)(39,44)(41,42)(47,48) 29 x, z, y σd_yz (1,2)(3,17)(4,18)(5,10)(6,9)(7,19)(8,20)(11,21)(12,22)(13,14)(15,23)(16,24)(25,26) (28,39)(29,38)(30,37)(31,41)(32,40)(33,42)(34,36)(43,45)(46,47) 30 x,-z,-y σd_yz' (1,14)(2,13)(3,21)(4,22)(5,6)(7,23)(8,24)(9,10)(11,17)(12,18)(15,19)(16,20)(25,47) (26,46)(27,48)(28,30)(31,32)(34,45)(35,44)(36,43)(37,39)(40,41) 31 -x,-z, y S4x (1,6,13,10)(2,5,14,9)(3,23,11,19)(4,24,12,20)(7,21,15,17)(8,22,16,18)(25,32,46,41) (26,31,47,40)(27,33,48,42)(28,45,37,36)(29,44,38,35)(30,43,39,34) 32 -x, z,-y S34x (1,10,13,6)(2,9,14,5)(3,19,11,23)(4,20,12,24)(7,17,15,21)(8,18,16,22)(25,41,46,32) (26,40,47,31)(27,42,48,33)(28,36,37,45)(29,35,38,44)(30,34,39,43) 33 z,-y,-x S4y (1,15,5,11)(2,16,6,12)(3,9,7,13)(4,10,8,14)(17,20,23,22)(18,19,24,21)(25,40,31,46) (26,42,32,48)(27,41,33,47)(28,37,34,43)(29,39,35,45)(30,38,36,44) 34 -z,-y, x S34y (1,11,5,15)(2,12,6,16)(3,13,7,9)(4,14,8,10)(17,22,23,20)(18,21,24,19)(25,46,31,40) (26,48,32,42)(27,47,33,41)(28,43,34,37)(29,45,35,39)(30,44,36,38) 35 -y, x,-z S4z (1,22,9,24)(2,21,10,23)(3,12,15,8)(4,11,16,7)(5,18,13,20)(6,17,14,19)(25,48,40,33) (26,47,41,32)(27,46,42,31)(28,38,43,35)(29,37,44,34)(30,39,45,36) 36 y,-x,-z S34z (1,24,9,22)(2,23,10,21)(3,8,15,12)(4,7,16,11)(5,20,13,18)(6,19,14,17)(25,33,40,48) (26,32,41,47)(27,31,42,46)(28,35,43,38)(29,34,44,37)(30,36,45,39) 37 -x,-y,-z i (1,13)(2,14)(3,15)(4,16)(5,9)(6,10)(7,11)(8,12)(17,23)(18,24)(19,21)(20,22)(25,43) (26,45)(27,44)(28,40)(29,42)(30,41)(31,37)(32,39)(33,38)(34,46)(35,48)(36,47) 38 -x, y, z σh_x (3,7)(4,8)(11,15)(12,16)(17,19)(18,20)(21,23)(22,24)(25,34)(26,36)(27,35)(28,31) (29,33)(30,32)(37,40)(38,42)(39,41)(43,46)(44,48)(45,47) 39 x,-y, z σh_y (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)(25,37)(26,39)(27,38)(28,46)(29,48) (30,47)(31,43)(32,45)(33,44)(34,40)(35,42)(36,41) 40 x, y,-z σh_z (1,5)(2,6)(9,13)(10,14)(17,21)(18,22)(19,23)(20,24)(25,28)(26,30)(27,29)(31,34) (32,36)(33,35)(37,46)(38,48)(39,47)(40,43)(41,45)(42,44) 41 -y, z, x S6x'y'z (1,17,12,13,23,8)(2,18,11,14,24,7)(3,10,22,15,6,20)(4,9,21,16,5,19)(25,39,48,43,32,35) (26,38,46,45,33,34)(27,37,47,44,31,36)(28,41,29,40,30,42) 42 z,-x, y S56x'y'z (1,8,23,13,12,17)(2,7,24,14,11,18)(3,20,6,15,22,10)(4,19,5,16,21,9)(25,35,32,43,48,39) (26,34,33,45,46,38)(27,36,31,44,47,37)(28,42,30,40,29,41) 43 y, z,-x S6x'yz' (1,19,16,13,21,4)(2,20,15,14,22,3)(5,17,8,9,23,12)(6,18,7,10,24,11)(25,36,42,43,47,29) (26,35,40,45,48,28)(27,34,41,44,46,30)(31,39,33,37,32,38) 44 -z, x, y S56x'yz' (1,4,21,13,16,19)(2,3,22,14,15,20)(5,12,23,9,8,17)(6,11,24,10,7,18)(25,29,47,43,42,36) (26,28,48,45,40,35)(27,30,46,44,41,34)(31,38,32,37,33,39) 45 y,-z, x S6xy'z' (1,21,8,13,19,12)(2,22,7,14,20,11)(3,6,24,15,10,18)(4,5,23,16,9,17)(25,30,33,43,41,38) (26,29,31,45,42,37)(27,28,32,44,40,39)(34,47,35,46,36,48) 46 z, x,-y S56xy'z' (1,12,19,13,8,21)(2,11,20,14,7,22)(3,18,10,15,24,6)(4,17,9,16,23,5)(25,38,41,43,33,30) (26,37,42,45,31,29)(27,39,40,44,32,28)(34,48,36,46,35,47) 47 -y,-z,-x S6xyz (1,23,4,13,17,16)(2,24,3,14,18,15)(5,21,12,9,19,8)(6,22,11,10,20,7)(25,45,27,43,26,44) (28,47,38,40,36,33)(29,46,39,42,34,32)(30,48,37,41,35,31) 48 -z,-x,-y S56xyz (1,16,17,13,4,23)(2,15,18,14,3,24)(5,8,19,9,12,21)(6,7,20,10,11,22)(25,44,26,43,27,45) (28,33,36,40,38,47)(29,32,34,42,39,46)(30,31,35,41,37,48)