Small subgroups and cosets
Submitted by brac37 on Sat, 10/16/2010 - 18:29.
Hello all,
I am making a program to scan subgroups and coset groups of Rubik's cube. For testing purposes, I scanned the square subgroup. It appeared that the corner coordinate of the square subgoup always satisfies a multiple of four antisymmetries (half of which are symmetries). Below follow the results. I computed modulo counts for all 420 antisymmetry subgroups, of which I choose six to display.
Square group table for FTM: Level | | SO | GO | inv | SO+inv | GO+inv | --------+--------+--------+--------+--------+--------+--------+ 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 6 | 1 | 1 | 6 | 1 | 1 | 2 | 27 | 2 | 2 | 15 | 2 | 2 | 3 | 120 | 6 | 5 | 72 | 4 | 4 | 4 | 519 | 24 | 18 | 267 | 16 | 13 | 5 | 1932 | 86 | 56 | 1026 | 51 | 38 | 6 | 6484 | 280 | 162 | 3292 | 156 | 97 | 7 | 20310 | 859 | 482 | 10332 | 458 | 277 | 8 | 55034 | 2322 | 1258 | 27650 | 1227 | 695 | 9 | 113892 | 4878 | 2627 | 57642 | 2566 | 1467 | 10 | 178495 | 7618 | 4094 | 90383 | 4087 | 2265 | 11 | 179196 | 7702 | 4137 | 90954 | 4114 | 2389 | 12 | 89728 | 3979 | 2231 | 47054 | 2428 | 1402 | 13 | 16176 | 852 | 548 | 8724 | 566 | 424 | 14 | 1488 | 186 | 114 | 1194 | 175 | 103 | 15 | 144 | 16 | 16 | 108 | 16 | 16 | Square group table for STM: Level | | SO | GO | inv | SO+inv | GO+inv | --------+--------+--------+--------+--------+--------+--------+ 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 9 | 2 | 2 | 9 | 2 | 2 | 2 | 51 | 4 | 4 | 27 | 3 | 3 | 3 | 265 | 16 | 15 | 157 | 12 | 12 | 4 | 1230 | 60 | 48 | 648 | 39 | 33 | 5 | 4767 | 214 | 145 | 2463 | 122 | 91 | 6 | 14868 | 646 | 392 | 7581 | 360 | 235 | 7 | 33863 | 1432 | 798 | 17171 | 764 | 459 | 8 | 70194 | 2938 | 1566 | 35439 | 1552 | 870 | 9 | 125616 | 5389 | 2923 | 63468 | 2830 | 1617 | 10 | 178672 | 7686 | 4114 | 90740 | 4162 | 2326 | 11 | 152928 | 6524 | 3484 | 77496 | 3467 | 1985 | 12 | 68848 | 3078 | 1718 | 36278 | 1921 | 1097 | 13 | 11328 | 670 | 454 | 6366 | 481 | 375 | 14 | 912 | 152 | 88 | 876 | 152 | 88 |