Three Million Random Positions in the Quarter Turn and Half Turn Metric
Submitted by rokicki on Sun, 06/05/2011 - 18:51.
Last year I solved one million random cubes in both the half-turn
and the quarter-turn metric. Unformtately, the random number
generator I used was good old |drand48()|, which is not of the
highest quality. This time, I generated 3,000,000 positions using
the Mersenne Twister random number generator and solved all of
these with a new faster optimal solver. This is the result:
12h 13h 14h 15h 16h 17h 18h 19h sum 14q - 1 2 - - - - - 3 15q - 4 19 13 - - - - 36 16q 1 11 47 124 126 - - - 309 17q - 10 86 425 1205 1130 - - 2856 18q - 8 115 995 5012 13512 5783 - 25425 19q - 6 106 1627 15638 88727 99345 1392 206841 20q - 3 69 1958 30113 301047 638444 21050 992684 21q - 1 19 1104 23151 310101 905366 48942 1288684 22q - - 2 152 4629 85334 362467 28922 481506 23q - - - - 7 141 1246 262 1656 sum 1 44 465 6398 79881 799992 2012651 100568 3000000With this data, we can calculate the observed distribution and a 95% confidence interval on the full set of positions. For the half turn metric, we have:
d observed conf-low conf-high actual 0 0 0 1.2805e-06 2.3120e-20 1 0 0 1.2805e-06 4.1617e-19 2 0 0 1.2805e-06 5.6182e-18 3 0 0 1.2805e-06 7.4910e-17 4 0 0 1.2805e-06 9.9970e-16 5 0 0 1.2805e-06 1.3292e-14 6 0 0 1.2805e-06 1.7614e-13 7 0 0 1.2805e-06 2.3306e-12 8 0 0 1.2805e-06 3.0804e-11 9 0 0 1.2805e-06 4.0684e-10 10 0 0 1.2805e-06 5.3696e-09 11 0 0 1.2805e-06 7.0824e-08 12 3.3333e-07 5.8840e-08 1.8884e-06 9.3347e-07 13 1.4667e-05 1.0926e-05 1.9688e-05 1.2292e-05 14 0.00015500 0.00014154 0.00016974 0.00016160 15 0.0021327 0.0020811 0.0021855 0.0021124 16 0.026627 0.026445 0.026810 17 0.26666 0.26616 0.26716 18 0.67088 0.67035 0.67142 19 0.033523 0.033320 0.033727 20 0 0 1.2805e-06The confidence intervals were calculated using the Wilson score interval. For the quarter turn metric, we have the following results:
d observed conf-low conf-high actual 0 0 0 1.2805e-06 2.3120e-20 1 0 0 1.2805e-06 2.7744e-19 2 0 0 1.2805e-06 2.6357e-18 3 0 0 1.2805e-06 2.4692e-17 4 0 0 1.2805e-06 2.3146e-16 5 0 0 1.2805e-06 2.1696e-15 6 0 0 1.2805e-06 2.0320e-14 7 0 0 1.2805e-06 1.9009e-13 8 0 0 1.2805e-06 1.7766e-12 9 0 0 1.2805e-06 1.6596e-11 10 0 0 1.2805e-06 1.5495e-10 11 0 0 1.2805e-06 1.4462e-09 12 0 0 1.2805e-06 1.3492e-08 13 0 0 1.2805e-06 1.2583e-07 14 1.0000e-06 3.4008e-07 2.9404e-06 1.1729e-06 15 1.2000e-05 8.6683e-06 1.6612e-05 1.0924e-05 16 0.00010300 9.2138e-05 0.00011514 0.00010158 17 0.00095200 0.00091773 0.00098754 0.00093980 18 0.0084750 0.0083719 0.0085794 19 0.068947 0.068661 0.069234 20 0.33089 0.33036 0.33143 21 0.42956 0.42900 0.43012 22 0.16050 0.16009 0.16092 23 0.00055200 0.00052605 0.00057923 24 0 0 1.2805e-06 25 0 0 1.2805e-06 26 0 0 1.2805e-06I stopped the above table at 26, even though it has not yet been proved that there are no positions at distance greater than 26 in the quarter-turn metric.