39 cubes with 20f moves in a class with 4 symmetries

After the analysis of cubes with more than 4 symmetries I now try to analyze cubes with 4 symetries. The smallest class has 15552 cubes wrt to M-symmetry. All cubes of this class can be solved in 20f moves. All positions which could not be reduced with the two phase solver to less than 20f moves within a day were solved with my optimal solver within about 4 days. I did not check if the positions are local maxima, so they still are candidates for a 21f maneuver when appending a move.

D L2 U' B2 L2 B2 D B2 U L2 U2 R2 B F L' D U F2 L' R' (20f*) //C2v (a1)
U B2 D' B2 F2 D' L R D2 B R2 D' R2 U2 R' B2 U2 R2 F R2 (20f*)
D R2 D F2 L2 D F2 D' B F U2 L D U F' R2 U2 F' L' R' (20f*)
D' U2 B2 R2 U R2 D' L R' D B2 U' L U2 B' R U' L2 F R' (20f*)
U L2 D2 R2 F2 D' B2 U' B D F R' B L D2 U' F D' F2 R (20f*)
L' F2 D' L2 R' D' L' F2 D2 U' L' F U' L2 D' B2 U2 L' F' U' (20f*)
U R2 U L2 F2 L2 U' L2 U' L2 B2 U2 B F L' D' U' F2 L R (20f*)
B2 D F2 U' B2 U R2 D' L R F D U R' D2 F2 L B F R2 (20f*)
L B2 R2 D F' D2 R2 U B F L D L' F' U2 R' F U2 R2 U' (20f*)
D' R2 D2 L2 F2 U B2 U' B D F R' B L D2 U' F D' F2 R (20f*)
B2 U F2 D' B2 D L' R' B D U L' D2 B2 L' D2 L2 B F' U' (20f*)
F2 L2 U2 F2 U' R2 D' F L' D' B' U' L2 D R' B' L R D2 R (20f*)
B2 R2 F L2 U' R F2 L' U L' D' U R U2 R U R2 U2 F' U' (20f*)
B' U2 R2 U R U2 R D' U L' U L' B2 R U' L2 B R2 F2 U' (20f*)
U R2 D F2 U2 B2 L' R' B' D U' R2 B2 L B' F' U2 R2 U' R2 (20f*)
U' F2 D R2 F2 R2 U' L2 U' R2 U2 R2 B F R' D U F2 L' R' (20f*)
U F2 D2 R2 U' L2 D B F' R B2 L' U2 L' D U' B' D2 L R' (20f*)
D R2 D L2 B2 L2 D' L2 D' L2 F2 U2 B F R' D' U' F2 L R (20f*)
D' B2 U2 F2 R2 D' L2 U B' U' F' R B' L' D U2 F' U F2 R' (20f*)
D B2 U L2 U' R2 D2 U' L' B R U L F U2 L' R2 D F R2 (20f*)
L2 U R2 U2 F2 D2 L' F' U B R B U2 L' D' F2 L2 B' F2 R' (20f*)
L2 B2 D U2 L2 B2 L2 B2 R' F U F D2 R B D' B L B2 R (20f*)
U L2 U' R2 F2 R2 D B2 D R2 D2 L2 B F R' D U F2 L' R' (20f*)
D' B L' B' F2 U2 R2 F U B D B2 L2 U F' L U F' R' U' (20f*)
D' R2 U F2 R2 F2 U' L2 D' R2 B2 D2 B F L' D U F2 L' R' (20f*)
D2 U' L2 U' R2 F2 L U F L2 U F' R' D F2 U' B R U2 R (20f*)
F2 U' F2 L2 D U2 F L' B R B2 U' R B' U L2 U2 B' D R (20f*)
R2 B' U F' L' D B' F2 D B2 D2 U' L' B2 R' B2 R' B R2 U' (20f*)
U2 L B' L2 D2 F L' U' R F2 L U2 B' U L F' D' B2 R2 U' (20f*)
L' U' B U2 B' U R B2 D2 B L2 B2 D' U L' U2 L2 B F' U' (20f*)
L2 B2 L2 R' B2 R B R2 U L B' F' R D L2 F R U2 R' U' (20f*)
R2 D L' D' U2 F' L' R2 D' U F R F2 U2 B' L2 R' F2 R' U' (20f*)
L' F L2 R2 U B2 D' F D U' B D' L' R' B D B2 L2 R' U' (20f*)
D F2 L2 R2 D' B2 L' B F R B2 R' B' D F2 L U2 B L2 R' (20f*)
F2 D B2 F2 L2 R2 U L2 U2 B D' U R F2 L' B' F D L R' (20f*)
B' U' B' D L B2 U2 L' R2 U' B L U F' L' R F2 U' R2 U' (20f*)
B2 D' B2 U' R2 B2 D2 L2 F L' B' D' F' R' D2 B2 L2 F U' R' (20f*)
F2 R2 B2 D2 R2 U2 R2 D R' F' D R2 D' F L' B' D2 F' L' R' (20f*)
B2 R B L' F' U B R' U L2 D L' D' F2 L F' R' F R' U' (20f*)

Comment viewing options

Select your preferred way to display the comments and click 'Save settings' to activate your changes.

Queastion regarding the Process

Do you compare each cube with te previous optimal cubes to determine whether it is optimal or do you have another way of determining optimality?

If you are comparing with the previous optimal solutions, do you have an available database for those?

I recommend to take a look at

I recommend to take a look at my homepage at

http://kociemba.homepage.t-online.de/cube.htm

for more details on suboptimal and optimal solving of the cube. But optimal solving of a cube has nothing to do with optimal solving of other cubes in this connection.

Is it possible for me to get

Is it possible for me to get a list of *all* of your distance 20 positions that you've proven? I can grab the list from this article and your prior one, but you mention they are not complete. If you give me this I'll add my list to it and put it up somewhere. Thanks!

Please give me your email add

Please give me your email address. If you do not want to give it here, send it to my email address given on my homepage.

Email

I'm rokicki at gmail.com. I've already started on the ones you posted (I'm solving all the neighbors optimally because I'm interested in any nearby distance-20 cubes as well). Right now I have a total of 174 distance-20 positions (mod M + inv); I look forward to getting more!

For the neighbors I've run so far for the set I have (over 700 unique neighbors), almost all are at distance 19, and only a couple are at distance 20.

Once I add yours I'd be happy to share the database around if anyone else is interested.

May I also have a copy of that?

my email address is demented_kat11@yahoo.com

Hmm, all these positions are

Hmm, all these positions are congruent (mod M) to their own inverse. Is that expected?

The first 26 are selfinverse,

The first 26 are selfinverse, for the other 13 a point reflection at the cube center gives the inverse. I only can state this - it was expected in no way.

Wow, that's great! I'm jus

Wow, that's great!

I'm just wrapping up a big set of 20-move positions, proving that they are local (nonstrict) maxima.

Is the time you give above (within a day) and (within about 4 days) for the entire set, or for each cube? I.e., how long did it take your optimal solver to find each 20-move solution?

Do you plan to check if they are local maxima?

It is the time for the whole

It is the time for the whole set. With the four days I am not totally sure, could also be 5 or 6 days - I do not write down when I started the computation.

That's still stunningly fast;

That's still stunningly fast; 39 20-optimal solutions in only a few days.