One Million Random Twenty-Four Puzzle Instances in the STM metric
I have solved sub-optimally 1,000,000 random instances of 5x5 sliding tile puzzle in STM metric (single-tile moves). The actual running time was about 18,5 hours. The minimum, maximum and average solution length were 73, 171 and 124.48 moves respectively. About 52% of 1,000,000 solutions were in range [118; 132]. There were only 32 instances with (suboptimal) solution length less than 81 (range [73; 80]). Only one instance was solved in 171 moves.
The suboptimal solver (kumi na tano 3.10 in batch mode) uses four phases as on the diagram below.
1 1 1 1 1 2 3 3 3 3 2 3 4 4 4 2 3 4 4 4 2 3 4 4 x
Along with this scheme, mirror reflection through main diagonal was also used. The program was allowed only to optimal solutions on each phase (the "slackness" value was limited to 0).
The header of the report is given below. The full report from batch solver can be downloaded from (7z archive) or (zip archive). The archive contains two text files: report.txt is the report, and instances.txt is just list of all solved configurations without any additional information. The archive expands to about 200 MB.
Puzzle: 5 x 5 Move metric: STM Start search at: off Stop search at: off Start with slackness: off Stop at slackness: 1 Time limit: off Right turns only: off Instances Solved: 1000000 Total Time: 67102.171 s Average Time: 67.102 ms Min. Length: 73 Max. Length: 171 Average Length: 124.4809 Total rNodes: 1505742903 Average rNodes: 1505.7429 length count 73 2 74 4 75 2 76 4 77 4 78 5 79 7 80 4 81 17 82 24 83 26 84 46 85 66 86 96 87 97 88 154 89 173 90 304 91 331 92 515 93 530 94 745 95 873 96 1196 97 1428 98 1926 99 2260 100 2882 101 3367 102 4293 103 4814 104 5996 105 6722 106 8557 107 9025 108 11264 109 11948 110 14706 111 15629 112 18661 113 19246 114 23049 115 23429 116 27506 117 27353 118 31613 119 30715 120 35137 121 33700 122 37859 123 35612 124 39417 125 36343 126 39202 127 35806 128 38200 129 33875 130 35289 131 31161 132 31747 133 27451 134 27206 135 23205 136 22558 137 18707 138 17872 139 14648 140 13744 141 10780 142 9897 143 7697 144 6765 145 5214 146 4616 147 3453 148 2849 149 2078 150 1777 151 1167 152 956 153 661 154 522 155 373 156 298 157 166 158 141 159 65 160 61 161 48 162 23 163 20 164 4 165 5 166 6 167 2 168 2 171 1
I have attempted to run the same batch in MTM metric; however, the number of alternative optimal solutions for each phase in this metric is significantly larger, and each instance requires 20 seconds in average to finish search with slackness = 0 (compared to 67 milliseconds in STM metric). So I've solved only 100 random instances in MTM metric with the same settings (searching only for optimal solutions for each phase). Results are given below.
Puzzle: 5 x 5 Move metric: MTM Start search at: off Stop search at: off Start with slackness: off Stop at slackness: 1 Time limit: off Right turns only: off Instances Solved: 100 Total Time: 2001.022 s Average Time: 20.010 s Min. Length: 49 Max. Length: 72 Average Length: 64.3000 Total rNodes: 808429478 Average rNodes: 8084294.7800 length count 49 1 57 5 58 6 59 3 60 2 61 8 62 11 63 6 64 7 65 12 66 7 67 7 68 8 69 6 70 1 71 4 72 6 Goal configuration: Blank Last 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 0 Regions (6): A fixed tiles: { }, current tiles: { 1 2 3 4 5 } B fixed tiles: { 1 2 3 4 5 }, current tiles: { 6 11 16 21 } C fixed tiles: { }, current tiles: { 1 6 11 16 21 } D fixed tiles: { 1 6 11 16 21 }, current tiles: { 2 3 4 5 } E fixed tiles: { 1 2 3 4 5 6 11 16 21 }, current tiles: { 7 8 9 10 12 17 22 } F fixed tiles: { 1 2 3 4 5 6 7 8 9 10 11 12 16 17 21 22 }, current tiles: { 13 14 15 18 19 23 } Chains (2): [A,B,E,F] 45 [C,D,E,F] 55 # Instance Length Time, ms rNodes Chain 1 17 10 16 4 7 14 19 1 20 5 24 8 6 22 21 9 13 3 18 12 15 23 2 11 0 68 15625 2364109 [A,B,E,F] 2 19 5 4 20 9 22 14 21 17 6 10 24 1 3 12 8 16 11 2 13 0 23 15 7 18 66 4516 329536 [C,D,E,F] 3 9 14 2 6 22 4 13 18 7 16 20 5 10 8 24 23 17 21 12 0 11 19 1 15 3 72 10890 3288922 [C,D,E,F] 4 23 16 5 3 12 6 18 7 24 10 19 17 9 20 8 0 1 13 15 4 21 22 14 2 11 63 81734 30454580 [C,D,E,F] 5 1 6 14 12 15 24 22 13 16 7 0 8 19 18 20 2 3 23 11 10 17 21 4 9 5 66 2344 862938 [A,B,E,F] 6 17 23 12 14 22 10 2 19 15 7 18 4 6 3 21 1 13 16 20 0 8 5 11 9 24 64 10547 3321975 [A,B,E,F] 7 5 20 10 17 7 6 11 13 12 8 9 4 3 2 16 24 21 15 22 19 0 1 14 23 18 64 63281 25227109 [A,B,E,F] 8 18 0 5 13 15 17 24 21 9 19 11 22 6 7 14 2 8 16 12 4 23 10 20 3 1 68 4266 1942328 [C,D,E,F] 9 20 12 8 23 16 6 7 14 19 2 0 18 21 17 13 22 10 1 3 11 24 9 5 4 15 65 4844 1301122 [A,B,E,F] 10 22 16 14 21 19 20 2 17 5 3 4 13 12 18 15 10 11 0 9 23 8 6 24 1 7 72 2265 264099 [C,D,E,F] 11 5 10 13 0 3 17 9 4 6 8 18 7 2 19 15 20 14 12 21 23 11 16 22 1 24 57 50484 20508436 [C,D,E,F] 12 15 23 7 2 4 17 24 5 16 0 19 10 8 13 14 9 12 11 1 3 22 6 20 21 18 65 16422 4338673 [A,B,E,F] 13 7 16 21 19 9 4 13 5 6 8 10 24 14 20 23 17 3 2 0 18 12 1 11 15 22 61 1453 543453 [A,B,E,F] 14 14 8 11 7 17 1 23 13 15 0 12 16 22 6 10 18 4 21 3 19 9 5 2 24 20 58 67641 20815945 [C,D,E,F] 15 17 2 0 24 18 12 23 5 3 13 15 22 14 6 7 4 21 1 19 20 8 10 16 11 9 62 3390 579982 [C,D,E,F] 16 18 11 23 1 5 16 17 2 0 4 20 3 12 10 9 22 24 6 14 15 21 19 13 8 7 49 422 85282 [A,B,E,F] 17 2 0 11 16 9 19 23 10 8 4 5 12 15 20 13 18 21 6 3 14 7 22 24 1 17 66 4547 1215456 [A,B,E,F] 18 21 24 8 20 14 11 12 10 0 22 2 6 7 5 23 9 4 19 3 13 18 15 16 17 1 67 4953 1086766 [A,B,E,F] 19 6 17 0 4 7 13 22 14 16 23 19 2 1 5 20 21 24 3 10 12 11 8 9 18 15 58 10937 4702300 [A,B,E,F] 20 4 3 14 2 11 12 20 21 15 17 16 13 5 22 18 8 6 10 9 7 19 0 1 24 23 68 484 78615 [A,B,E,F] 21 21 19 17 15 24 13 11 3 4 20 0 10 6 7 12 5 14 16 9 1 18 23 2 22 8 64 61734 28688899 [A,B,E,F] 22 1 5 24 4 14 22 6 16 2 3 0 17 19 9 10 18 11 15 23 7 13 21 8 20 12 57 266 19261 [C,D,E,F] 23 24 14 0 12 6 3 4 1 19 17 23 16 2 15 11 18 10 20 5 9 22 21 13 8 7 63 3453 736051 [C,D,E,F] 24 23 21 10 3 24 4 0 5 11 18 9 22 14 13 6 1 19 16 12 17 7 15 20 8 2 69 14469 2403736 [C,D,E,F] 25 11 18 9 12 1 20 4 17 10 5 13 8 0 6 19 21 14 2 15 16 22 24 7 3 23 59 5500 1645635 [C,D,E,F] 26 2 10 21 13 12 11 17 4 1 23 14 16 18 19 8 24 3 0 5 15 6 9 7 22 20 61 1782 837255 [C,D,E,F] 27 16 6 10 2 21 23 15 20 17 0 24 7 1 4 19 13 9 5 11 12 8 18 3 22 14 61 36156 16022992 [A,B,E,F] 28 19 9 15 0 22 6 21 16 14 18 12 1 4 17 3 13 10 23 7 11 24 2 20 5 8 66 469 204538 [C,D,E,F] 29 0 7 8 2 22 12 20 23 5 16 3 15 17 6 10 19 13 21 9 18 1 14 4 11 24 66 11546 4913908 [C,D,E,F] 30 13 11 3 14 22 24 19 8 17 21 1 4 9 0 15 18 6 7 12 16 10 2 5 23 20 62 17687 8755985 [A,B,E,F] 31 9 5 24 19 2 13 18 10 6 14 12 22 23 4 7 0 16 21 3 8 11 20 1 15 17 63 14625 5705597 [C,D,E,F] 32 17 6 21 16 1 5 18 19 4 15 2 14 12 23 7 8 10 3 9 11 0 22 13 24 20 62 60906 24395670 [A,B,E,F] 33 7 16 17 6 18 14 21 20 11 0 24 10 12 23 4 9 3 8 5 15 19 2 1 22 13 65 63313 24722577 [C,D,E,F] 34 7 8 0 23 21 15 20 22 3 6 2 19 24 10 14 16 17 11 18 9 5 1 4 13 12 66 274625 111291709 [C,D,E,F] 35 8 11 24 6 1 10 14 13 15 19 5 0 7 18 16 9 22 23 2 20 17 12 21 3 4 64 8735 3240705 [A,B,E,F] 36 9 3 23 13 21 18 1 19 14 4 8 20 22 5 15 6 24 10 11 7 12 2 0 17 16 61 3500 1131400 [A,B,E,F] 37 5 16 15 2 21 19 17 22 6 8 4 13 1 23 7 18 24 10 9 20 11 12 0 3 14 65 60016 26948453 [C,D,E,F] 38 1 20 18 7 24 16 10 9 3 2 21 11 5 12 0 19 4 13 6 14 17 23 8 22 15 57 2391 789338 [C,D,E,F] 39 9 17 13 6 19 8 15 16 21 14 23 5 11 7 22 18 2 0 4 24 3 10 1 12 20 61 2235 978543 [A,B,E,F] 40 15 1 3 20 21 7 18 6 5 0 24 17 9 11 10 13 23 12 19 8 4 16 2 14 22 67 12672 5648079 [C,D,E,F] 41 2 1 8 23 21 4 5 11 6 18 17 22 12 14 0 16 19 7 3 15 13 9 24 20 10 62 5391 1979476 [A,B,E,F] 42 20 2 24 19 18 5 6 0 3 23 4 8 9 11 7 22 10 15 12 13 14 1 17 21 16 58 7062 2267176 [C,D,E,F] 43 7 11 1 6 16 14 23 0 18 21 5 4 15 24 22 10 9 19 17 20 2 13 3 8 12 71 66031 34794500 [C,D,E,F] 44 15 9 20 10 18 22 17 5 8 7 11 0 3 4 23 24 13 12 6 2 14 21 1 16 19 65 5750 989661 [A,B,E,F] 45 17 23 2 14 12 4 6 11 0 20 9 21 15 10 16 5 19 18 13 24 8 3 22 1 7 65 8781 4018920 [C,D,E,F] 46 24 9 22 3 8 18 11 19 21 2 5 6 15 7 1 0 10 16 17 12 4 23 20 13 14 71 19578 7299144 [A,B,E,F] 47 11 10 4 14 0 18 20 21 2 23 12 5 8 9 13 3 24 15 19 7 6 1 22 17 16 67 1187 139938 [A,B,E,F] 48 3 23 9 2 10 18 12 14 15 8 17 19 0 1 22 5 13 24 11 20 6 4 21 16 7 63 5578 2752704 [C,D,E,F] 49 1 20 12 5 6 23 2 9 22 7 11 17 18 0 19 8 4 16 3 21 24 10 13 15 14 61 1860 438761 [C,D,E,F] 50 4 0 21 13 14 8 19 11 9 7 1 6 2 16 23 15 12 3 20 24 10 18 22 17 5 62 20719 9676830 [C,D,E,F] 51 10 4 23 3 1 8 0 16 7 9 21 11 18 22 17 2 13 24 14 5 6 12 19 15 20 62 2344 993458 [C,D,E,F] 52 15 18 11 0 13 14 23 1 2 19 7 3 12 4 5 8 16 21 20 24 17 6 22 10 9 59 2047 607672 [A,B,E,F] 53 15 9 24 6 21 5 8 13 17 12 22 14 19 18 16 20 3 10 0 1 4 2 23 7 11 69 126422 61608710 [A,B,E,F] 54 19 5 23 10 0 17 8 9 18 4 6 2 1 22 7 21 11 16 12 24 3 13 20 14 15 57 1328 199642 [C,D,E,F] 55 3 2 1 23 17 9 19 8 6 12 5 0 13 22 24 18 7 11 10 20 15 21 4 16 14 66 7047 1471169 [A,B,E,F] 56 7 16 3 4 0 12 8 18 6 19 23 21 1 13 2 10 9 17 20 15 24 11 22 5 14 62 297 51387 [C,D,E,F] 57 1 20 3 2 8 15 13 12 21 22 5 23 19 10 11 0 24 9 7 16 4 17 18 6 14 68 7656 3334984 [A,B,E,F] 58 1 5 24 23 13 18 9 8 17 14 16 11 2 6 15 20 10 22 7 3 21 4 12 0 19 58 218 23925 [C,D,E,F] 59 4 13 20 21 16 10 15 6 23 1 2 19 14 12 11 3 22 7 17 24 9 5 0 8 18 65 38860 9974118 [C,D,E,F] 60 22 4 24 16 13 12 2 1 18 3 5 10 11 15 23 14 6 8 19 0 20 7 17 9 21 68 1375 143252 [A,B,E,F] 61 13 9 5 8 7 18 14 15 17 20 3 1 16 19 21 2 6 23 22 10 11 24 4 0 12 61 2672 1006829 [C,D,E,F] 62 3 24 21 19 15 22 0 14 11 10 5 1 13 9 16 6 17 23 8 2 4 12 20 7 18 68 2765 977561 [C,D,E,F] 63 8 22 0 24 23 20 10 17 1 6 11 21 9 5 14 4 7 15 12 16 2 13 18 3 19 70 7485 1241101 [A,B,E,F] 64 21 5 24 12 2 22 14 3 6 15 16 11 9 4 10 8 18 20 23 1 17 13 19 7 0 64 4188 523962 [C,D,E,F] 65 17 4 1 18 11 16 9 21 7 24 3 15 2 8 14 19 12 6 23 0 20 10 13 22 5 62 5547 1796898 [A,B,E,F] 66 20 4 23 15 12 21 24 7 8 18 2 1 22 6 19 5 14 0 3 9 10 16 17 13 11 69 15094 1793012 [C,D,E,F] 67 23 15 14 12 1 3 8 11 22 24 6 21 10 4 9 2 17 7 5 0 19 20 13 16 18 64 9062 1430957 [C,D,E,F] 68 7 6 17 4 9 0 21 2 12 20 10 1 15 8 3 11 13 23 16 14 18 5 24 22 19 58 734 73969 [A,B,E,F] 69 10 16 4 15 18 0 6 11 22 24 8 3 1 13 9 17 7 19 12 14 21 5 23 20 2 65 922 100400 [C,D,E,F] 70 10 19 18 0 6 5 3 17 2 13 9 22 21 11 16 24 23 1 15 8 20 4 12 7 14 68 1094 244580 [C,D,E,F] 71 17 22 15 21 0 8 9 6 4 5 16 1 11 19 2 12 7 23 20 10 24 18 14 13 3 58 54766 26183863 [C,D,E,F] 72 5 7 6 11 14 17 3 1 24 0 4 9 2 23 13 22 16 21 15 12 18 20 10 19 8 59 2562 1011956 [A,B,E,F] 73 7 16 5 21 10 1 12 9 15 24 8 14 23 19 18 13 2 6 3 0 20 17 22 4 11 60 20875 7108795 [A,B,E,F] 74 13 7 19 24 4 23 15 18 22 5 21 16 3 14 11 1 17 10 2 9 0 6 8 12 20 65 1469 319130 [A,B,E,F] 75 20 3 0 15 23 1 12 13 5 10 8 22 21 6 11 2 7 14 24 17 9 16 18 19 4 61 3704 1241366 [A,B,E,F] 76 7 21 24 8 9 16 10 6 11 23 2 0 15 12 17 3 4 22 1 5 20 19 18 13 14 68 1579 223532 [C,D,E,F] 77 18 20 19 10 12 23 8 11 24 5 0 16 17 4 15 22 2 9 6 13 7 21 14 3 1 69 3079 625239 [C,D,E,F] 78 23 15 14 6 4 20 17 19 10 21 2 24 22 0 1 13 18 16 11 9 8 7 3 5 12 72 14765 5273099 [A,B,E,F] 79 10 3 12 23 22 16 0 5 4 17 7 19 8 13 21 6 15 2 11 9 20 14 18 1 24 65 9313 3075238 [C,D,E,F] 80 9 2 20 17 18 15 11 23 6 7 12 4 14 24 19 13 21 8 16 1 10 3 5 22 0 67 42469 19436832 [C,D,E,F] 81 3 17 12 7 21 18 10 20 13 15 6 22 19 0 4 9 16 1 8 23 11 2 5 24 14 63 96750 46267106 [A,B,E,F] 82 8 17 14 6 15 5 18 21 2 9 13 11 1 12 23 3 22 20 7 16 24 19 4 10 0 64 35344 15834118 [C,D,E,F] 83 6 14 23 15 16 24 7 19 10 20 18 3 4 0 2 13 9 12 21 5 1 22 8 11 17 72 2657 967913 [C,D,E,F] 84 0 3 10 1 24 22 14 21 5 18 6 20 11 9 17 4 19 15 23 12 8 13 16 7 2 62 42031 13467875 [A,B,E,F] 85 23 4 24 1 18 7 11 2 12 14 13 5 10 17 6 20 16 15 19 8 0 21 22 3 9 65 4797 919814 [A,B,E,F] 86 9 8 13 0 23 18 5 7 3 19 20 6 16 21 15 17 2 22 4 10 1 14 24 11 12 67 4782 491437 [A,B,E,F] 87 11 4 12 15 9 24 18 19 22 16 20 7 17 6 8 10 0 3 13 2 14 23 5 21 1 72 3828 1162876 [A,B,E,F] 88 24 9 10 17 3 14 18 22 13 12 16 0 21 11 2 20 4 15 6 5 23 7 1 19 8 62 2656 416363 [C,D,E,F] 89 12 16 11 1 5 20 22 8 9 6 17 7 0 15 4 19 14 3 24 10 23 13 21 2 18 57 1562 387487 [A,B,E,F] 90 7 15 24 16 6 13 21 3 19 12 0 23 9 20 11 10 4 8 14 17 22 1 5 2 18 69 139735 73969673 [A,B,E,F] 91 16 13 6 17 2 3 1 9 7 15 14 20 21 22 24 0 8 18 10 11 5 23 19 4 12 63 1828 554163 [C,D,E,F] 92 22 20 9 24 16 13 19 2 10 3 18 17 15 0 6 4 23 1 21 8 7 11 14 12 5 71 7703 2504389 [C,D,E,F] 93 21 7 15 9 13 22 24 23 1 19 6 3 8 10 16 5 2 14 20 4 17 12 0 11 18 69 1516 338280 [C,D,E,F] 94 21 1 9 11 10 0 23 13 22 4 12 14 2 8 7 18 15 24 6 20 19 16 5 17 3 60 672 289571 [C,D,E,F] 95 22 14 16 6 13 2 24 15 20 21 1 10 23 17 7 3 0 11 18 19 12 4 5 8 9 72 20672 8466378 [C,D,E,F] 96 15 13 16 4 7 9 11 24 21 2 23 8 20 5 14 22 1 17 18 6 0 3 19 12 10 71 2578 430369 [C,D,E,F] 97 21 14 18 2 17 10 9 16 3 7 19 0 12 11 4 1 22 20 23 13 5 6 15 8 24 67 48063 21236300 [C,D,E,F] 98 15 6 4 21 20 0 7 24 12 3 17 11 2 13 9 16 1 5 14 18 10 23 22 8 19 67 7110 1641391 [A,B,E,F] 99 16 1 24 12 23 4 8 14 7 19 22 20 6 13 5 0 18 3 2 11 10 21 15 9 17 65 7875 1442361 [C,D,E,F] 100 20 18 19 15 5 3 13 12 24 11 14 0 4 6 16 2 1 22 10 8 17 21 23 7 9 62 18063 8795911 [A,B,E,F]
I've solved 10 instances from Korf and Taylor paper 'Finding Optimal Solutions to the Twenty-Four Puzzle' (1996). Search settings were the same; only optimal solutions in each phase were considered. The results are given below along with optimal solution lengths from the mentioned paper.
------------------------------------------------------------------------------------ Instance Solved in Optimal ------------------------------------------------------------------------------------ 17 1 20 9 16 2 22 19 14 5 15 21 0 3 24 23 18 13 12 7 10 8 6 4 11 124 100 14 5 9 2 18 8 23 19 12 17 15 0 10 20 4 6 11 21 1 7 24 3 16 22 13 119 95 7 13 11 22 12 20 1 18 21 5 0 8 14 24 19 9 4 17 16 10 23 15 3 2 6 126 108 18 14 0 9 8 3 7 19 2 15 5 12 1 13 24 23 4 21 10 20 16 22 11 6 17 120 98 2 0 10 19 1 4 16 3 15 20 22 9 6 18 5 13 12 21 8 17 23 11 24 7 14 125 101 16 5 1 12 6 24 17 9 2 22 4 10 13 18 19 20 0 23 7 21 15 11 8 3 14 114 96 21 22 15 9 24 12 16 23 2 8 5 18 17 7 10 14 13 4 0 6 20 11 3 1 19 128 104 6 0 24 14 8 5 21 19 9 17 16 20 10 13 2 15 11 22 1 3 7 23 4 18 12 115 97 3 2 17 0 14 18 22 19 15 20 9 7 10 21 16 6 24 23 8 5 1 4 11 12 13 129 113 23 14 0 24 17 9 20 21 2 18 10 13 22 1 3 11 4 16 6 5 7 12 8 15 19 138 114 ------------------------------------------------------------------------------------
- Bulat