
cube files
Indexed Cube Lovers Archive
![]() |
cube archivesGAP filesBlogs
Forum topicsActive forum topics:New forum topics:User loginNavigation |
{4,3,3} 3 symmetry
Submitted by Jakub Stepo on Sun, 02/24/2019 - 06:09.
Hello, I am new to this forum and this is my first post. I know that maybe its content will seem trivial to some of you, but I am afraid that I am not so well versed in mathematics and programming, so I try to do at least something within my limited capabilities (I am 15.34 at the moment).
Based on Dan Hoey’s calculations, I was able to calculate the number of essentially different positions up to symmetry of the four-dimensional analogue of the Rubik’s cube. However, it is quite probable that I have made some mistakes, as I have done it only by hand. Nevertheless, from the patterns observed I was able to make some interesting generalizations, presented later in this post. I describe the conjugacy classes here with Greg Egan’s notation; his webpage was a huge help to me. To briefly introduce it, it characterizes them by listing which cycles do the 3-cube-centre-pairs (the pairs consist of centres with opposite coordinates) form and whether do they swap also or not, which is denoted using signs. However, even-length cycles are assigned the opposite sign. For example, consider the rotation analogous to two-fold rotation about diagonal in 3D – one 3-cube-centre-pair swaps and two other are exchanged without swapping, so we write it as (1,−)(2,−). When more cycles of the same type occur, it is shortened with exponents: class equivalent to two-fold rotation about face axis in 3D can is written as (1,−)^2 The determinant can be determined easily, so that it is 1 (proper rotation) for even number of minus signs and −1 (improper rotation) for odd number of minus signs. Order of the class is equal to lowest common multiple of the cycles, doubled if it is even permutation of the centre-pairs and improper rotation or odd permutation of them and proper rotation. Size of the class is the number of ways we can choose such cycles times (k−1)! times 2^(k−1) for each k-cycle. Now on to the calculation: Here is a table listing which cycles emerge within the pieces of the puzzle along with class’ order and size; for the sake of brevity, “cycle(s)” shall be abbreviated to “c”: Conjugacy class Order Size 2-coloured 3-coloured 4-coloured ========= ===== ==== ========== ========== ========== e 1 1 24 1-c 32 1-c 16 1-c (1,−)^4 2 1 12 2-c 16 2-c 8 2-c (1,−)^2 2 6 4 1-c 16 2-c 8 2-c 10 2-c (2,+) 4 12 4 1-c 8 4-c 4 4-c 5 4-c (1,−)^2 4 12 2 2-c 8 4-c 4 4-c (2,+) 5 4-c (2,+)^2 4 12 6 4-c 8 4-c 4 4-c (2,−)^2 2 12 4 1-c 16 2-c 4 1-c 10 2-c 6 2-c (1,−) 2 24 2 1-c 4 1-c 8 2-c (2,−) 11 2-c 14 2-c (3,+) 3 32 8 3-c 2 1-c 2 1-c 10 3-c 2 1-c 4 3-c (1,−) 6 32 4 6-c 1 2-c 2 2-c (3,−) 5 6-c 2 6-c (4,+) 8 48 3 8-c 4 8-c 2 8-c (1,−) 2 4 12 1-c 8 1-c 8 2-c 6 2-c 12 2-c (1,−)^3 2 4 12 2-c 16 2-c 8 2-c (2,−) 2 12 6 1-c 8 1-c 8 1-c 9 2-c 12 2-c 4 2-c (1,−)^2 2 12 2 1-c 16 2-c 8 2-c (2,−) 11 2-c (1,−) 4 24 2 2-c 8 4-c 4 4-c (2,+) 5 4-c (2,−) 4 24 2 1-c 8 4-c 4 4-c (2,+) 1 2-c 5 4-c (3,−) 6 32 4 6-c 1 2-c 2 2-c 5 6-c 2 6-c (1,−) 6 32 4 3-c 2 1-c 2 2-c (3,+) 2 6-c 2 3-c 2 6-c 4 6-c (4,−) 4 48 6 4-c 8 4-c 4 4-cHere are the deducted numbers: 2-COLOURED Conjugacy class Permutations Orientations Positions ============ ============ ============ =============================== e 24! × 2^24/2 = 5204698426366666226930810880000 (1,−)^4 12!×2^12 × 2^12 = 8036313307545600 (1,−)^2 4!×10!×2^10 × 2^4×2^10/2 = 730573937049600 (2,+) 4!×5!×4^5 × 2^4×2^5/2 = 754974720 (1,−)^2(2,+) 2×2^2×5!×4^5 × 2^2×2^5 = 125829120 (2,+)^2 6!×4^6 × 2^6 = 188743680 (2,−)^2 4!×10!×2^10 × 2^4×2^10/2 = 730573937049600 (1,−)(2,−) 2×11!×2^11 × 2×2^11/2 = 334846387814400 (3,+) 8!×3^8 × 2^8/2 = 33861058560 (1,−)(3,−) 4!×6^4 × 2^4 = 497664 (4,+) 3!×8^3 × 2^3 = 24576 (1,−) 12!×6!×2^6 × 2^12×2^6/2 = 2893072790716416000 (1,−)^3 12!×2^12 × 2^12 = 8036313307545600 (2,−) 6!×9!×2^9 × 2^6×2^9/2 = 2191721811148800 (1,−)^2(2,−) 2×11!×2^11 × 2^2×2^11/2 = 669692775628800 (1,−)(2,+) 2×2^2×5!×4^5 × 2^2×2^5 = 125829120 (2,−)(2,+) 2×2×5!×4^5 × 2^2×2×2^5/2 = 62914560 (3,−) 4!×6^4 × 2^4 = 497664 (1,−)(3,+) 4!×3^4×2×6^2 × 2^4×2^2/2 = 4478976 (4,−) 6!×4^6 × 2^6 = 188743680 3-COLOURED Conjugacy class Permutations Orientations Positions ============ ============== ============= ============================================================= e 32! × 6^32/2 = 1047084579365917383525797057070930493704282754126970880000000 (1,−)^4 16!×2^16 × 6^16 = 3868294502459441978076561408000 (1,−)^2 16!×2^16 × 6^16 = 3868294502459441978076561408000 (2,+) 8!×4^8 × 6^8 = 4438236667576320 (1,−)^2(2,+) 8!×4^8 × 6^8 = 4438236667576320 (2,+)^2 8!×4^8 × 6^8 = 4438236667576320 (2,−)^2 16!×2^16 × 6^16 = 3868294502459441978076561408000 (1,−)(2,−) 4!×14!×2^14 × 2^4×6^14/2 = 21490525013663566544869785600 (3,+) 2×10!×3^10 × 3^4×6^10/2 = 1049477429229826867200 (1,−)(3,−) 2×5!×6^5 × 3×6^5 = 43535646720 (4,+) 4!×8^4 × 6^4 = 127401984 (1,−) 8!×12!×2^12 × 6^8×6^12/2 = 144614702168868369334246834176000 (1,−)^3 16!×2^16 × 6^16 = 3868294502459441978076561408000 (2,−) 8!×12!×2^12 × 2^8×6^12/2 = 22041564116578016969097216000 (1,−)^2(2,−) 16!×2^16 × 6^16 = 3868294502459441978076561408000 (1,−)(2,+) 8!×4^8 × 6^8 = 4438236667576320 (2,−)(2,+) 8!×4^8 × 6^8 = 4438236667576320 (3,−) 2×5!×6^5 × 3×6^5 = 43535646720 (1,−)(3,+) 2×2×3^2×4!×6^4 × 3^2×6^2×6^4/2 = 235092492288 (4,−) 8!×4^8 × 6^8 = 4438236667576320 4-COLOURED Conjugacy class Permutations Orientations Positions ============ ============== ============ ============================== e 16!/2 × 12^16/3 = 644715750409906996346093568000 (1,−)^4 8!×2^8/2 × 12^8/3 = 739706111262720 (1,−)^2 8!×2^8/2 × 12^8/3 = 739706111262720 (2,+) 4!×4^4/2 × 12^4/3 = 21233664 (1,−)^2(2,+) 4!×4^4/2 × 12^4/3 = 21233664 (2,+)^2 4!×4^4/2 × 12^4/3 = 21233664 (2,−)^2 4!×6!×2^6/2 × 2^4×12^6/3 = 8806025134080 (1,−)(2,−) 8!×2^8/2 × 12^8/3 = 739706111262720 (3,+) (2×2)×4!×3^4/2 × 3^4×12^4/3 = 2176782336 (1,−)(3,−) 2×2^2×2×6^2/2 × 3^2×12^2/3 = 124416 (4,+) 2×8^2/2 × 12^2/3 = 3072 (1,−) 8!×2^8/2 × 12^8 = 2219118333788160 (1,−)^3 8!×2^8/2 × 12^8 = 2219118333788160 (2,−) 8!×4!×2^4/2 × 2^8×12^4 = 41094783959040 (1,−)^2(2,−) 8!×2^8/2 × 12^8 = 2219118333788160 (1,−)(2,+) 4!×4^4/2 × 12^4 = 63700992 (2,−)(2,+) 4!×4^4/2 × 12^4 = 63700992 (3,−) 2×2×6^2/2 × 3^2×12^2 = 93312 (1,−)(3,+) 2×2×6^2/2 × 3^2×12^2 = 93312 (4,−) 4!×4^4/2 × 12^4 = 63700992The total for each class is (2-coloured)×(3-coloured)/2 ×(4-coloured)×(class size). TOTAL Conjugacy class Total ============ ========================================================================================================================= e 1756772880709135843168526079081025059614484630149557651477156021733236798970168550600274887650082354207129600000000000000 (1,−)^4 11497557803313571701881319062903855825682866660890902528000000 (1,−)^2 6271395165443766382844355852493012268554290905940492288000000 (2,+) 426893024140465883454209890713600 (1,−)^2(2,+) 71148837356744313909034981785600 (2,+)^2 106723256035116470863552472678400 (2,−)^2 149318932510565866258198948868881244489387878712868864000000 (1,−)(2,−) 63875321129519842788229550349465865698238148116060569600000 (3,+) 1237680706117919967859807513199071199232000 (1,−)(3,−) 43129799915034095124480 (4,+) 230844665274826752 (1,−) 1856873273785608466117989769149838721779822477836435975045120000000 (1,−)^3 137970693639762860422575828754846269908194399930690830336000000 (2,−) 11911481795714655997805044354212748848156298016980992000000 (1,−)^2(2,−) 34492673409940715105643957188711567477048599982672707584000000 (1,−)(2,+) 426893024140465883454209890713600 (2,−)(2,+) 213446512070232941727104945356800 (3,−) 32347349936275571343360 (1,−)(3,+) 1572081206902992767287296 (4,−) 1280679072421397650362629672140800 Total/384 4574929376846707924918036664273502759412720391014473055557863939959893650526399862305272865622237030657852043408965632So there are 4 574 929 376 846 707 924 918 036 664 273 502 759 412 720 391 014 473 055 557 863 939 959 893 650 526 399 862 305 272 865 622 237 030 657 852 043 408 965 632 ≈ 4.57×10^117 essentially different positions of this puzzle up to symmetry, which is about 4 octotrigintillion 575 septentrigintillion (short scale) or 4 novendecilliard 575 novendecillion (long scale). Having calculated this, I will now attempt to create a general guide to calculate the number of positions reduced in symmetry for any sequential move puzzle:
Sadly, I do not understand antisymmetry well enough (yet) to do corresponding calculations including antisymmetry also. I have only calculated that the number of self-inverse positions of the 4D-analogue-of-the-Rubik’s-cube should be 1 514 851 187 547 945 564 174 052 809 349 480 746 221 364 817 706 402 235 357 461 479 424. Anyways, I hope that at least some of you found this interesting. Yours faithfully, Jakub |
Browse archives
Pollwww.olympicube.com need cube lovers opinion on which cube to produce first olympic cube 6a 83% olympic cube 6b 17% Total votes: 23 Syndicate |