Starts-with and Ends-With
On the old Cube-Lovers list, the terms Starts-with and Ends-with were defined as follows. For a cube position x, StartsWith(x)=S(x) is the set of all moves with which a minimal maneuver can start and EndsWith(x)=E(x) is the set of all moves with which a minimal maneuver can end.
The concept is much older than Cube-Lovers, of course. It's obvious that from any position except for Start itself, there must be at least one move which takes the Cube closer to Start. The set of all such moves is simply the set of inverses of E(x).
A couple of very simple examples might be in order. If x=URL-1, then S(x)={U} and E(x)={R,L-1}. From position x, the moves R-1 and L will take the Cube closer to Start. We might write this as E-1(x)={R-1,L}. If y=URR (in the quarter turn metric), then it is also the case that y=UR-1R-1. Hence, we have S(y)={U}, E(y)={R,R-1}, and E-1(y)={R,R-1}.
S(x) and E(x) are not very easy things to know. Indeed, knowledge of S(x) and E(x) for every Cube position would be tantamount to full knowledge of God's Algorithm. My current God's Algorithm program begins with the Start position and progressively determines the number of positions that are 1, 2, 3, etc. moves from Start. I have posted results out to 13q and out to 11f. As an artifact of the basic algorithm, the program also determines both S(x) and E(x) for every position. The program summarizes some of the S(x) and E(x) results. I have not posted these results before, and I will do so later in this message.
The definition of S(x) and E(x) applies to both the quarter turn metric and to the face turn metric. In the quarter turn metric, E-1(x) partitions the set of quarter turns into those moves that take the Cube closer to Start and those moves that take the Cube further from Start. Therefore, in the quarter turn metric it is that case that E(x) uniquely determines local maxima. If E(x)=Q where Q is the set of quarter turns, then x is a local maximum. Equivalently, if |E(x)|=12, then x is a local maximum.
The same is not true in the face turn metric. A move can take the Cube closer to Start, can take the Cube further from Start, or can leave the Cube the same distance from Start. So a position can be a local maximum in the face turn metric even if E(x) does not contain all the face turns. For example, the Pons Asinorum position is a local maximum in the face turn metric even though E(x) only contains 6 moves. Hence, my current God's Algorithm program cannot in general identify local maxima in the face turn metric even though it can in the quarter turn metric.
A position in the face turn metric is a strong local maximum if every move takes the position closer to Start. A local maximum in the face turn metric that is not a strong local maximum is a weak local maximum. That raises the interesting question of whether there are any strong local maxima. It turns out that there are, but there's no theoretical reason that I know of why that must be so. A strong local maximum can be identified as a position for which |E(x)|=18. Because of that, my program can uniquely identify strong local maxima.
The tables below are antisymmetric. That must be so because |S(x)|=|E(x-1)| etc. The shortest local maxima in the quarter turn metric are of length 10q. These have been reported previously on Cube-Lovers. The shortest strong local maxima in the face turn metric are of length 9f. I suspect that the shortest local maximum in the face turn metric is the aforementioned Pons Asinorum of length 6f, but I don't know that the possibility of a shorter local maximum in the face turn metric has ever been ruled out.
Quarter Turn Metric Summary of |S(x)| and |E(x)| |x| |S(x)| |E(x)| patterns positions (positions unique up to symmetry) 0 0 0 1 1 1 1 1 1 12 2 1 1 2 96 2 2 2 3 18 3 1 1 16 768 3 1 2 4 144 3 2 1 4 144 3 3 3 1 12 4 1 1 156 7296 4 1 2 24 1152 4 1 3 2 96 4 2 1 24 1152 4 2 2 10 216 4 3 1 2 96 4 4 4 1 3 5 1 1 1424 68352 5 1 2 236 10944 5 1 3 16 768 5 1 4 1 24 5 2 1 236 10944 5 2 2 40 1728 5 2 3 4 144 5 3 1 16 768 5 3 2 4 144 5 4 1 1 24 6 1 1 13332 639456 6 1 2 2150 102432 6 1 3 156 7296 6 1 4 4 192 6 2 1 2150 102432 6 2 2 384 16992 6 2 3 24 1152 6 2 4 3 36 6 3 1 156 7296 6 3 2 24 1152 6 3 3 4 192 6 4 1 4 192 6 4 2 3 36 6 4 4 1 24 7 1 1 124482 5972256 7 1 2 20022 958992 7 1 3 1428 68544 7 1 4 42 1920 7 2 1 20022 958992 7 2 2 3489 164016 7 2 3 254 11808 7 2 4 8 288 7 3 1 1428 68544 7 3 2 254 11808 7 3 3 36 1680 7 3 4 3 120 7 4 1 42 1920 7 4 2 8 288 7 4 3 3 120 7 4 4 8 336 8 1 1 1161021 55725744 8 1 2 187646 8998752 8 1 3 13491 647184 8 1 4 421 19824 8 2 1 187646 8998752 8 2 2 32110 1529640 8 2 3 2390 113760 8 2 4 88 3624 8 2 5 1 48 8 3 1 13491 647184 8 3 2 2390 113760 8 3 3 320 15168 8 3 4 40 1824 8 4 1 421 19824 8 4 2 88 3624 8 4 3 40 1824 8 4 4 113 2904 8 4 6 1 24 8 5 2 1 48 8 6 4 1 24 8 6 6 2 32 8 8 8 3 27 9 1 1 10829774 519810912 9 1 2 1757942 84360720 9 1 3 127532 6119040 9 1 4 4392 208872 9 1 5 1 48 9 1 6 1 48 9 1 8 1 12 9 2 1 1757942 84360720 9 2 2 296216 14186208 9 2 3 22484 1077360 9 2 4 885 41184 9 2 5 22 1056 9 3 1 127532 6119040 9 3 2 22484 1077360 9 3 3 2675 127104 9 3 4 301 13968 9 3 5 27 912 9 3 6 6 288 9 3 8 1 48 9 4 1 4392 208872 9 4 2 885 41184 9 4 3 301 13968 9 4 4 370 16488 9 4 5 6 288 9 5 1 1 48 9 5 2 22 1056 9 5 3 27 912 9 5 4 6 288 9 5 5 17 696 9 5 8 1 48 9 6 1 1 48 9 6 3 6 288 9 6 6 8 288 9 7 7 2 96 9 8 1 1 12 9 8 3 1 48 9 8 5 1 48 10 1 1 101016272 4848717648 10 1 2 16448933 789486000 10 1 3 1201921 57689232 10 1 4 44187 2116176 10 1 5 306 14688 10 1 6 70 2976 10 1 8 12 576 10 2 1 16448933 789486000 10 2 2 2747597 131784432 10 2 3 211867 10159824 10 2 4 9778 459432 10 2 5 240 11520 10 2 6 77 3528 10 2 7 3 144 10 2 8 8 300 10 3 1 1201921 57689232 10 3 2 211867 10159824 10 3 3 22790 1093408 10 3 4 2090 99264 10 3 5 133 6384 10 3 6 21 1008 10 3 7 1 48 10 3 8 2 96 10 4 1 44187 2116176 10 4 2 9778 459432 10 4 3 2090 99264 10 4 4 2657 115386 10 4 5 108 5088 10 4 6 41 1584 10 4 7 1 48 10 5 1 306 14688 10 5 2 240 11520 10 5 3 133 6384 10 5 4 108 5088 10 5 5 132 5832 10 5 6 6 288 10 6 1 70 2976 10 6 2 77 3528 10 6 3 21 1008 10 6 4 41 1584 10 6 5 6 288 10 6 6 103 2952 10 7 2 3 144 10 7 3 1 48 10 7 4 1 48 10 7 7 6 288 10 8 1 12 576 10 8 2 8 300 10 8 3 2 96 10 8 8 15 324 10 10 10 8 138 10 12 12 4 42 (shortest local maxima in quarter turn metric) 11 1 1 942084406 45219930720 11 1 2 153748573 7379729496 11 1 3 11315607 543131472 11 1 4 439721 21076032 11 1 5 4813 231024 11 1 6 1397 64704 11 1 7 26 1248 11 1 8 147 6936 11 2 1 153748573 7379729496 11 2 2 25606674 1228857096 11 2 3 1977557 94898112 11 2 4 96845 4625112 11 2 5 3065 144888 11 2 6 771 36240 11 2 7 41 1968 11 2 8 76 3456 11 2 10 2 48 11 3 1 11315607 543131472 11 3 2 1977557 94898112 11 3 3 200207 9603136 11 3 4 21623 1032600 11 3 5 1803 86304 11 3 6 476 21696 11 3 7 50 2400 11 3 8 38 1824 11 3 9 2 96 11 3 10 5 156 11 3 11 2 72 11 4 1 439721 21076032 11 4 2 96845 4625112 11 4 3 21623 1032600 11 4 4 17062 807624 11 4 5 1216 57264 11 4 6 350 16464 11 4 7 44 2064 11 4 8 25 960 11 4 10 5 240 11 5 1 4813 231024 11 5 2 3065 144888 11 5 3 1803 86304 11 5 4 1216 57264 11 5 5 753 35568 11 5 6 168 7632 11 5 7 15 720 11 5 8 9 432 11 5 10 1 48 11 6 1 1397 64704 11 6 2 771 36240 11 6 3 476 21696 11 6 4 350 16464 11 6 5 168 7632 11 6 6 250 10896 11 6 7 23 1056 11 6 8 6 288 11 6 10 1 48 11 7 1 26 1248 11 7 2 41 1968 11 7 3 50 2400 11 7 4 44 2064 11 7 5 15 720 11 7 6 23 1056 11 7 7 39 1824 11 7 8 6 288 11 7 9 6 288 11 7 10 1 48 11 8 1 147 6936 11 8 2 76 3456 11 8 3 38 1824 11 8 4 25 960 11 8 5 9 432 11 8 6 6 288 11 8 7 6 288 11 8 8 13 624 11 8 10 1 48 11 9 3 2 96 11 9 7 6 288 11 9 9 2 24 11 10 2 2 48 11 10 3 5 156 11 10 4 5 240 11 10 5 1 48 11 10 6 1 48 11 10 7 1 48 11 10 8 1 48 11 10 10 5 192 11 11 3 2 72 12 1 1 8783724399 421618316448 12 1 2 1435883951 68921873016 12 1 3 106292624 5101979448 12 1 4 4342903 208398528 12 1 5 65297 3129600 12 1 6 18768 899616 12 1 7 905 43440 12 1 8 1840 88128 12 1 9 16 768 12 1 10 46 2208 12 1 11 4 192 12 2 1 1435883951 68921873016 12 2 2 239147526 11478163980 12 2 3 18587534 892133088 12 2 4 961693 46061880 12 2 5 38238 1832688 12 2 6 9012 427488 12 2 7 717 33744 12 2 8 798 38208 12 2 9 24 1152 12 2 10 29 1392 12 2 11 8 384 12 2 12 6 240 12 3 1 106292624 5101979448 12 3 2 18587534 892133088 12 3 3 1840021 88311512 12 3 4 205576 9853488 12 3 5 19062 913512 12 3 6 4152 197760 12 3 7 528 25200 12 3 8 215 10128 12 3 9 10 480 12 3 10 24 1152 12 3 11 2 96 12 4 1 4342903 208398528 12 4 2 961693 46061880 12 4 3 205576 9853488 12 4 4 148355 7027632 12 4 5 12455 597000 12 4 6 4580 213552 12 4 7 480 22920 12 4 8 538 24948 12 4 9 31 1488 12 4 10 99 4704 12 4 12 2 48 12 5 1 65297 3129600 12 5 2 38238 1832688 12 5 3 19062 913512 12 5 4 12455 597000 12 5 5 5827 279000 12 5 6 1248 59808 12 5 7 242 11592 12 5 8 91 4152 12 5 9 11 528 12 5 10 3 144 12 6 1 18768 899616 12 6 2 9012 427488 12 6 3 4152 197760 12 6 4 4580 213552 12 6 5 1248 59808 12 6 6 3192 136308 12 6 7 192 9168 12 6 8 239 10392 12 6 9 23 1056 12 6 10 31 1320 12 6 12 6 288 12 7 1 905 43440 12 7 2 717 33744 12 7 3 528 25200 12 7 4 480 22920 12 7 5 242 11592 12 7 6 192 9168 12 7 7 263 12384 12 7 8 45 2160 12 7 9 5 240 12 7 10 5 240 12 8 1 1840 88128 12 8 2 798 38208 12 8 3 215 10128 12 8 4 538 24948 12 8 5 91 4152 12 8 6 239 10392 12 8 7 45 2160 12 8 8 598 18684 12 8 9 9 432 12 8 10 22 912 12 8 12 11 408 12 9 1 16 768 12 9 2 24 1152 12 9 3 10 480 12 9 4 31 1488 12 9 5 11 528 12 9 6 23 1056 12 9 7 5 240 12 9 8 9 432 12 9 9 27 1264 12 9 10 1 48 12 9 11 1 48 12 10 1 46 2208 12 10 2 29 1392 12 10 3 24 1152 12 10 4 99 4704 12 10 5 3 144 12 10 6 31 1320 12 10 7 5 240 12 10 8 22 912 12 10 9 1 48 12 10 10 62 2088 12 10 12 7 240 12 11 1 4 192 12 11 2 8 384 12 11 3 2 96 12 11 9 1 48 12 11 11 7 240 12 11 12 1 48 12 12 2 6 240 12 12 4 2 48 12 12 6 6 288 12 12 8 11 408 12 12 10 7 240 12 12 11 1 48 12 12 12 70 1641 13 1 1 81865248532 3929530575552 13 1 2 13402102133 643299207408 13 1 3 997279934 47869325232 13 1 4 42665046 2047739232 13 1 5 818454 39284064 13 1 6 229038 10972032 13 1 7 14457 693936 13 1 8 21816 1044144 13 1 9 383 18288 13 1 10 1075 51312 13 1 11 88 4224 13 1 12 21 1008 13 2 1 13402102133 643299207408 13 2 2 2235171013 107285861712 13 2 3 175593325 8428224144 13 2 4 9707685 465665208 13 2 5 445661 21377976 13 2 6 111099 5311488 13 2 7 10174 487608 13 2 8 9274 442080 13 2 9 607 29136 13 2 10 671 31632 13 2 11 46 2184 13 2 12 35 1680 13 3 1 997279934 47869325232 13 3 2 175593325 8428224144 13 3 3 17554912 842573480 13 3 4 2068402 99220728 13 3 5 218204 10467024 13 3 6 52180 2492040 13 3 7 7765 369576 13 3 8 3982 189600 13 3 9 622 29256 13 3 10 410 19440 13 3 11 81 3600 13 3 12 25 1200 13 4 1 42665046 2047739232 13 4 2 9707685 465665208 13 4 3 2068402 99220728 13 4 4 1312252 62812668 13 4 5 133264 6388272 13 4 6 46023 2192544 13 4 7 6695 319368 13 4 8 4704 222960 13 4 9 696 33408 13 4 10 553 26280 13 4 11 84 3912 13 4 12 104 4848 13 5 1 818454 39284064 13 5 2 445661 21377976 13 5 3 218204 10467024 13 5 4 133264 6388272 13 5 5 52878 2531688 13 5 6 15359 734424 13 5 7 3278 156888 13 5 8 1378 65424 13 5 9 224 10728 13 5 10 139 6336 13 5 11 19 912 13 5 12 14 624 13 6 1 229038 10972032 13 6 2 111099 5311488 13 6 3 52180 2492040 13 6 4 46023 2192544 13 6 5 15359 734424 13 6 6 17433 820272 13 6 7 2503 119184 13 6 8 1747 81984 13 6 9 327 15648 13 6 10 262 12216 13 6 11 42 1872 13 6 12 23 1104 13 7 1 14457 693936 13 7 2 10174 487608 13 7 3 7765 369576 13 7 4 6695 319368 13 7 5 3278 156888 13 7 6 2503 119184 13 7 7 1618 75984 13 7 8 490 23472 13 7 9 130 6024 13 7 10 59 2832 13 7 11 14 672 13 7 12 11 528 13 8 1 21816 1044144 13 8 2 9274 442080 13 8 3 3982 189600 13 8 4 4704 222960 13 8 5 1378 65424 13 8 6 1747 81984 13 8 7 490 23472 13 8 8 1217 56136 13 8 9 109 5112 13 8 10 120 5616 13 8 11 17 720 13 8 12 18 864 13 9 1 383 18288 13 9 2 607 29136 13 9 3 622 29256 13 9 4 696 33408 13 9 5 224 10728 13 9 6 327 15648 13 9 7 130 6024 13 9 8 109 5112 13 9 9 80 3264 13 9 10 16 744 13 9 11 1 48 13 9 12 1 48 13 10 1 1075 51312 13 10 2 671 31632 13 10 3 410 19440 13 10 4 553 26280 13 10 5 139 6336 13 10 6 262 12216 13 10 7 59 2832 13 10 8 120 5616 13 10 9 16 744 13 10 10 141 6720 13 10 11 8 384 13 10 12 11 528 13 11 1 88 4224 13 11 2 46 2184 13 11 3 81 3600 13 11 4 84 3912 13 11 5 19 912 13 11 6 42 1872 13 11 7 14 672 13 11 8 17 720 13 11 9 1 48 13 11 10 8 384 13 11 11 19 816 13 11 12 1 48 13 12 1 21 1008 13 12 2 35 1680 13 12 3 25 1200 13 12 4 104 4848 13 12 5 14 624 13 12 6 23 1104 13 12 7 11 528 13 12 8 18 864 13 12 9 1 48 13 12 10 11 528 13 12 11 1 48 13 12 12 13 624
Face Turn Metric Summary of |S(x)| and |E(x)| |x| |S(x)| |E(x)| patterns positions (positions unique up to symmetry) 0 0 0 1 1 1 1 1 1 18 2 1 1 5 216 2 2 2 4 27 3 1 1 55 2592 3 1 2 10 324 3 2 1 10 324 4 1 1 746 34968 4 1 2 83 3888 4 2 1 83 3888 4 2 2 21 492 4 4 4 1 3 5 1 1 9660 463296 5 1 2 1108 51888 5 1 4 2 18 5 2 1 1108 51888 5 2 2 174 7176 5 2 4 2 24 5 3 3 19 576 5 4 1 2 18 5 4 2 2 24 6 1 1 127718 6127560 6 1 2 14513 692064 6 1 3 85 3888 6 1 4 15 504 6 2 1 14513 692064 6 2 2 1947 88668 6 2 3 27 1200 6 2 4 17 594 6 3 1 85 3888 6 3 2 27 1200 6 3 3 113 4872 6 4 1 15 504 6 4 2 17 594 6 4 4 24 255 6 6 6 15 583 7 1 1 1685940 80903592 7 1 2 192243 9217728 7 1 3 2077 99552 7 1 4 282 12264 7 1 6 132 6336 7 2 1 192243 9217728 7 2 2 23829 1126692 7 2 3 599 26988 7 2 4 108 4290 7 2 5 21 1008 7 2 6 7 312 7 2 7 3 144 7 3 1 2077 99552 7 3 2 599 26988 7 3 3 503 22356 7 3 4 50 2280 7 3 5 15 648 7 3 6 1 12 7 4 1 282 12264 7 4 2 108 4290 7 4 3 50 2280 7 4 4 101 3072 7 4 5 3 120 7 4 6 1 48 7 4 8 1 48 7 5 2 21 1008 7 5 3 15 648 7 5 4 3 120 7 5 5 26 714 7 5 7 1 12 7 6 1 132 6336 7 6 2 7 312 7 6 3 1 12 7 6 4 1 48 7 6 6 75 2568 7 6 7 2 96 7 6 8 1 48 7 7 2 3 144 7 7 5 1 12 7 7 6 2 96 7 7 7 6 168 7 8 4 1 48 7 8 6 1 48 7 10 10 1 6 8 1 1 22251034 1068019080 8 1 2 2549011 122303784 8 1 3 33400 1599528 8 1 4 4198 197760 8 1 5 287 13776 8 1 6 2047 97560 8 1 7 39 1872 8 1 8 8 384 8 2 1 2549011 122303784 8 2 2 306251 14640522 8 2 3 6866 327504 8 2 4 1457 67188 8 2 5 328 15600 8 2 6 350 16536 8 2 7 47 2232 8 2 8 1 24 8 3 1 33400 1599528 8 3 2 6866 327504 8 3 3 5456 255768 8 3 4 608 28008 8 3 5 159 7320 8 3 6 73 3336 8 3 7 10 480 8 3 8 4 192 8 4 1 4198 197760 8 4 2 1457 67188 8 4 3 608 28008 8 4 4 688 25413 8 4 5 87 4128 8 4 6 42 1632 8 4 7 9 432 8 4 8 3 108 8 5 1 287 13776 8 5 2 328 15600 8 5 3 159 7320 8 5 4 87 4128 8 5 5 124 5304 8 5 6 22 1008 8 5 7 11 528 8 6 1 2047 97560 8 6 2 350 16536 8 6 3 73 3336 8 6 4 42 1632 8 6 5 22 1008 8 6 6 338 12889 8 6 7 3 120 8 6 8 5 192 8 7 1 39 1872 8 7 2 47 2232 8 7 3 10 480 8 7 4 9 432 8 7 5 11 528 8 7 6 3 120 8 7 7 20 648 8 7 8 2 96 8 7 9 1 48 8 8 1 8 384 8 8 2 1 24 8 8 3 4 192 8 8 4 3 108 8 8 6 5 192 8 8 7 2 96 8 8 8 19 438 8 8 9 2 96 8 9 7 1 48 8 9 8 2 96 8 9 9 5 120 8 10 10 5 144 8 12 12 3 18 9 1 1 293625442 14093870064 9 1 2 33711631 1617992064 9 1 3 498571 23926224 9 1 4 68094 3253920 9 1 5 8263 396552 9 1 6 29839 1431000 9 1 7 1104 52992 9 1 8 179 8592 9 2 1 33711631 1617992064 9 2 2 4017656 192649008 9 2 3 100112 4792344 9 2 4 17262 812520 9 2 5 2711 129480 9 2 6 4491 213516 9 2 7 390 18624 9 2 8 77 3408 9 2 9 19 912 9 2 10 5 240 9 2 12 1 24 9 3 1 498571 23926224 9 3 2 100112 4792344 9 3 3 48218 2301096 9 3 4 7307 347088 9 3 5 1822 86520 9 3 6 1093 51960 9 3 7 223 10536 9 3 8 128 5952 9 3 9 13 576 9 3 10 7 288 9 3 12 3 144 9 3 14 1 48 9 4 1 68094 3253920 9 4 2 17262 812520 9 4 3 7307 347088 9 4 4 5827 261840 9 4 5 822 38520 9 4 6 421 18558 9 4 7 97 4512 9 4 8 57 2400 9 4 9 5 144 9 4 10 2 48 9 4 12 1 48 9 5 1 8263 396552 9 5 2 2711 129480 9 5 3 1822 86520 9 5 4 822 38520 9 5 5 1012 44400 9 5 6 223 9948 9 5 7 56 2568 9 5 8 18 768 9 5 9 13 624 9 5 10 6 288 9 6 1 29839 1431000 9 6 2 4491 213516 9 6 3 1093 51960 9 6 4 421 18558 9 6 5 223 9948 9 6 6 2279 100885 9 6 7 51 2256 9 6 8 60 2256 9 6 9 4 156 9 6 10 6 240 9 6 12 3 56 9 6 14 1 6 9 7 1 1104 52992 9 7 2 390 18624 9 7 3 223 10536 9 7 4 97 4512 9 7 5 56 2568 9 7 6 51 2256 9 7 7 149 6432 9 7 8 18 768 9 7 9 3 96 9 7 11 1 24 9 7 12 2 48 9 8 1 179 8592 9 8 2 77 3408 9 8 3 128 5952 9 8 4 57 2400 9 8 5 18 768 9 8 6 60 2256 9 8 7 18 768 9 8 8 97 3216 9 8 9 10 360 9 8 10 1 24 9 8 12 1 24 9 9 2 19 912 9 9 3 13 576 9 9 4 5 144 9 9 5 13 624 9 9 6 4 156 9 9 7 3 96 9 9 8 10 360 9 9 9 33 1232 9 9 10 1 12 9 10 2 5 240 9 10 3 7 288 9 10 4 2 48 9 10 5 6 288 9 10 6 6 240 9 10 8 1 24 9 10 9 1 12 9 10 10 26 696 9 11 7 1 24 9 12 2 1 24 9 12 3 3 144 9 12 4 1 48 9 12 6 3 56 9 12 7 2 48 9 12 8 1 24 9 12 12 6 168 9 12 17 1 24 9 13 13 1 48 9 14 3 1 48 9 14 6 1 6 9 14 14 4 78 9 17 12 1 24 9 18 18 2 32 (shortest strong local maxima in face turn metric) 10 1 1 3872815251 185894472840 10 1 2 445589172 21387834528 10 1 3 7171651 344216592 10 1 4 1016422 48752448 10 1 5 134187 6437352 10 1 6 413236 19823328 10 1 7 18451 885456 10 1 8 3743 179568 10 1 9 277 13296 10 1 10 94 4512 10 1 12 27 1296 10 1 14 4 192 10 2 1 445589172 21387834528 10 2 2 52606796 2524319964 10 2 3 1400237 67156800 10 2 4 235083 11222844 10 2 5 39571 1893672 10 2 6 63216 3024144 10 2 7 5426 259560 10 2 8 1795 85548 10 2 9 278 13296 10 2 10 138 6288 10 2 11 10 384 10 2 12 21 1008 10 2 13 8 384 10 2 14 8 384 10 3 1 7171651 344216592 10 3 2 1400237 67156800 10 3 3 540322 25896384 10 3 4 100168 4793472 10 3 5 23424 1120608 10 3 6 13014 619800 10 3 7 3110 148896 10 3 8 1242 58872 10 3 9 261 12264 10 3 10 153 7128 10 3 11 21 984 10 3 12 15 720 10 3 13 8 384 10 3 16 2 96 10 4 1 1016422 48752448 10 4 2 235083 11222844 10 4 3 100168 4793472 10 4 4 54504 2553462 10 4 5 10843 517896 10 4 6 6317 296772 10 4 7 1650 78480 10 4 8 803 37278 10 4 9 161 7536 10 4 10 92 4272 10 4 11 22 1032 10 4 12 26 1224 10 4 13 1 24 10 4 14 3 144 10 5 1 134187 6437352 10 5 2 39571 1893672 10 5 3 23424 1120608 10 5 4 10843 517896 10 5 5 7258 341040 10 5 6 2773 131496 10 5 7 785 36984 10 5 8 426 20352 10 5 9 136 6288 10 5 10 65 2880 10 5 11 11 528 10 5 12 12 480 10 5 13 6 288 10 6 1 413236 19823328 10 6 2 63216 3024144 10 6 3 13014 619800 10 6 4 6317 296772 10 6 5 2773 131496 10 6 6 16232 748812 10 6 7 811 38280 10 6 8 600 26748 10 6 9 109 5088 10 6 10 63 2748 10 6 11 17 744 10 6 12 10 456 10 6 13 1 48 10 7 1 18451 885456 10 7 2 5426 259560 10 7 3 3110 148896 10 7 4 1650 78480 10 7 5 785 36984 10 7 6 811 38280 10 7 7 905 40536 10 7 8 242 11256 10 7 9 85 4008 10 7 10 46 2088 10 7 11 10 480 10 7 12 2 96 10 7 13 2 96 10 8 1 3743 179568 10 8 2 1795 85548 10 8 3 1242 58872 10 8 4 803 37278 10 8 5 426 20352 10 8 6 600 26748 10 8 7 242 11256 10 8 8 764 29622 10 8 9 63 2952 10 8 10 69 2952 10 8 11 8 384 10 8 12 11 528 10 8 13 4 96 10 8 14 2 96 10 8 16 1 6 10 9 1 277 13296 10 9 2 278 13296 10 9 3 261 12264 10 9 4 161 7536 10 9 5 136 6288 10 9 6 109 5088 10 9 7 85 4008 10 9 8 63 2952 10 9 9 182 7980 10 9 10 21 1008 10 9 11 4 192 10 9 12 1 48 10 9 13 3 120 10 9 14 1 24 10 10 1 94 4512 10 10 2 138 6288 10 10 3 153 7128 10 10 4 92 4272 10 10 5 65 2880 10 10 6 63 2748 10 10 7 46 2088 10 10 8 69 2952 10 10 9 21 1008 10 10 10 188 6525 10 10 11 6 288 10 10 12 5 120 10 10 13 2 96 10 10 14 1 24 10 10 16 1 48 10 11 2 10 384 10 11 3 21 984 10 11 4 22 1032 10 11 5 11 528 10 11 6 17 744 10 11 7 10 480 10 11 8 8 384 10 11 9 4 192 10 11 10 6 288 10 11 11 28 912 10 11 12 2 72 10 11 13 1 24 10 11 15 1 24 10 12 1 27 1296 10 12 2 21 1008 10 12 3 15 720 10 12 4 26 1224 10 12 5 12 480 10 12 6 10 456 10 12 7 2 96 10 12 8 11 528 10 12 9 1 48 10 12 10 5 120 10 12 11 2 72 10 12 12 45 1016 10 12 13 1 48 10 12 14 2 60 10 12 17 1 48 10 13 2 8 384 10 13 3 8 384 10 13 4 1 24 10 13 5 6 288 10 13 6 1 48 10 13 7 2 96 10 13 8 4 96 10 13 9 3 120 10 13 10 2 96 10 13 11 1 24 10 13 12 1 48 10 13 13 14 576 10 13 14 1 48 10 13 15 1 24 10 14 1 4 192 10 14 2 8 384 10 14 4 3 144 10 14 8 2 96 10 14 9 1 24 10 14 10 1 24 10 14 12 2 60 10 14 13 1 48 10 14 14 8 252 10 15 11 1 24 10 15 13 1 24 10 15 16 1 48 10 16 3 2 96 10 16 8 1 6 10 16 10 1 48 10 16 15 1 48 10 16 16 9 120 10 17 12 1 48 10 17 17 1 24 10 18 18 6 107 11 1 1 51053195698 2450552215440 11 1 2 5880076220 282241951632 11 1 3 101690227 4881029784 11 1 4 14806460 710565192 11 1 5 2061080 98928720 11 1 6 5632845 270337440 11 1 7 283489 13605552 11 1 8 67229 3224904 11 1 9 7322 351456 11 1 10 3149 151032 11 1 11 281 13296 11 1 12 517 24768 11 1 13 161 7728 11 1 14 134 6432 11 1 16 10 480 11 2 1 5880076220 282241951632 11 2 2 694472589 33332098788 11 2 3 19732343 946981272 11 2 4 3388193 162347760 11 2 5 584361 28034304 11 2 6 848455 40674900 11 2 7 84073 4033512 11 2 8 23853 1140600 11 2 9 5082 243432 11 2 10 2332 110640 11 2 11 390 18672 11 2 12 330 15732 11 2 13 132 6336 11 2 14 29 1392 11 2 16 8 384 11 3 1 101690227 4881029784 11 3 2 19732343 946981272 11 3 3 6804797 326444436 11 3 4 1457352 69882912 11 3 5 330661 15854064 11 3 6 182676 8750920 11 3 7 48694 2333184 11 3 8 18518 885648 11 3 9 4662 223248 11 3 10 2303 109704 11 3 11 462 22128 11 3 12 377 17760 11 3 13 64 3024 11 3 14 45 2160 11 3 15 1 48 11 3 16 4 192 11 4 1 14806460 710565192 11 4 2 3388193 162347760 11 4 3 1457352 69882912 11 4 4 653014 31123020 11 4 5 153438 7353432 11 4 6 85268 4064160 11 4 7 22932 1098264 11 4 8 11182 530976 11 4 9 3198 153000 11 4 10 1884 89280 11 4 11 457 21864 11 4 12 317 14568 11 4 13 109 5160 11 4 14 84 3864 11 4 15 7 336 11 4 16 10 480 11 4 17 1 48 11 5 1 2061080 98928720 11 5 2 584361 28034304 11 5 3 330661 15854064 11 5 4 153438 7353432 11 5 5 80491 3843576 11 5 6 35205 1681896 11 5 7 11518 550728 11 5 8 5390 257208 11 5 9 1826 87000 11 5 10 1010 48336 11 5 11 252 12096 11 5 12 214 10104 11 5 13 68 3216 11 5 14 49 2352 11 5 15 5 240 11 5 16 9 432 11 6 1 5632845 270337440 11 6 2 848455 40674900 11 6 3 182676 8750920 11 6 4 85268 4064160 11 6 5 35205 1681896 11 6 6 95469 4496958 11 6 7 8936 426456 11 6 8 4830 225084 11 6 9 1435 68496 11 6 10 1051 48588 11 6 11 208 9888 11 6 12 182 7740 11 6 13 44 2016 11 6 14 62 2904 11 6 15 1 48 11 6 16 1 48 11 6 18 4 96 11 7 1 283489 13605552 11 7 2 84073 4033512 11 7 3 48694 2333184 11 7 4 22932 1098264 11 7 5 11518 550728 11 7 6 8936 426456 11 7 7 7508 348828 11 7 8 2391 113496 11 7 9 791 37704 11 7 10 486 22512 11 7 11 126 5904 11 7 12 136 6336 11 7 13 23 936 11 7 14 32 1536 11 7 15 6 288 11 7 16 2 96 11 8 1 67229 3224904 11 8 2 23853 1140600 11 8 3 18518 885648 11 8 4 11182 530976 11 8 5 5390 257208 11 8 6 4830 225084 11 8 7 2391 113496 11 8 8 4199 178602 11 8 9 664 31368 11 8 10 622 28680 11 8 11 149 7032 11 8 12 185 8352 11 8 13 25 1128 11 8 14 21 912 11 8 15 2 96 11 8 16 4 192 11 9 1 7322 351456 11 9 2 5082 243432 11 9 3 4662 223248 11 9 4 3198 153000 11 9 5 1826 87000 11 9 6 1435 68496 11 9 7 791 37704 11 9 8 664 31368 11 9 9 814 36744 11 9 10 238 11208 11 9 11 78 3720 11 9 12 59 2736 11 9 13 25 1104 11 9 14 18 816 11 9 15 3 144 11 10 1 3149 151032 11 10 2 2332 110640 11 10 3 2303 109704 11 10 4 1884 89280 11 10 5 1010 48336 11 10 6 1051 48588 11 10 7 486 22512 11 10 8 622 28680 11 10 9 238 11208 11 10 10 1003 41232 11 10 11 80 3768 11 10 12 130 5772 11 10 13 26 1032 11 10 14 51 2028 11 10 16 4 144 11 10 18 1 12 11 11 1 281 13296 11 11 2 390 18672 11 11 3 462 22128 11 11 4 457 21864 11 11 5 252 12096 11 11 6 208 9888 11 11 7 126 5904 11 11 8 149 7032 11 11 9 78 3720 11 11 10 80 3768 11 11 11 129 5688 11 11 12 52 2472 11 11 13 16 768 11 11 14 16 744 11 11 15 5 216 11 11 16 1 24 11 11 17 4 192 11 12 1 517 24768 11 12 2 330 15732 11 12 3 377 17760 11 12 4 317 14568 11 12 5 214 10104 11 12 6 182 7740 11 12 7 136 6336 11 12 8 185 8352 11 12 9 59 2736 11 12 10 130 5772 11 12 11 52 2472 11 12 12 311 11634 11 12 13 17 816 11 12 14 10 432 11 12 15 1 24 11 12 16 9 264 11 12 17 1 48 11 13 1 161 7728 11 13 2 132 6336 11 13 3 64 3024 11 13 4 109 5160 11 13 5 68 3216 11 13 6 44 2016 11 13 7 23 936 11 13 8 25 1128 11 13 9 25 1104 11 13 10 26 1032 11 13 11 16 768 11 13 12 17 816 11 13 13 35 1164 11 13 14 6 288 11 13 15 1 48 11 13 16 3 144 11 13 17 4 192 11 14 1 134 6432 11 14 2 29 1392 11 14 3 45 2160 11 14 4 84 3864 11 14 5 49 2352 11 14 6 62 2904 11 14 7 32 1536 11 14 8 21 912 11 14 9 18 816 11 14 10 51 2028 11 14 11 16 744 11 14 12 10 432 11 14 13 6 288 11 14 14 94 3054 11 14 16 4 96 11 14 17 1 48 11 14 18 3 96 11 15 3 1 48 11 15 4 7 336 11 15 5 5 240 11 15 6 1 48 11 15 7 6 288 11 15 8 2 96 11 15 9 3 144 11 15 11 5 216 11 15 12 1 24 11 15 13 1 48 11 15 15 11 252 11 16 1 10 480 11 16 2 8 384 11 16 3 4 192 11 16 4 10 480 11 16 5 9 432 11 16 6 1 48 11 16 7 2 96 11 16 8 4 192 11 16 10 4 144 11 16 11 1 24 11 16 12 9 264 11 16 13 3 144 11 16 14 4 96 11 16 16 21 600 11 16 17 2 96 11 16 18 5 192 11 17 4 1 48 11 17 11 4 192 11 17 12 1 48 11 17 13 4 192 11 17 14 1 48 11 17 16 2 96 11 17 17 1 12 11 18 6 4 96 11 18 10 1 12 11 18 14 3 96 11 18 16 5 192 11 18 18 32 984