Here are the results of an exploration of four groups, all of whom leave the edges in some M-symmetric class, for the face turn metric:
Fixes edges:
d | pos | M | M+inv |
0 | 1 | 1 | 1 |
8 | 528 | 11 | 6 |
9 | 360 | 8 | 5 |
10 | 2521 | 63 | 43 |
11 | 5220 | 117 | 68 |
12 | 72008 | 1541 | 821 |
13 | 217374 | 4584 | 2378 |
14 | 1084624 | 22743 | 11690 |
15 | 4905894 | 102419 | 51896 |
16 | 16944222 | 353629 | 178786 |
17 | 20029566 | 418360 | 212304 |
18 | 827386 | 17502 | 9419 |
19 | 216 | 7 | 7 |
| 44089920 | 920985 | 467424 |
Pons Asinorums edges:
d | pos | M | M+inv |
6 | 4 | 2 | 2 |
7 | 6 | 1 | 1 |
8 | 78 | 3 | 3 |
9 | 116 | 6 | 6 |
10 | 462 | 12 | 12 |
11 | 5708 | 130 | 78 |
12 | 32556 | 690 | 373 |
13 | 151618 | 3194 | 1668 |
14 | 896527 | 18790 | 9605 |
15 | 5065624 | 105810 | 53641 |
16 | 20437568 | 426585 | 215786 |
17 | 17156739 | 358427 | 182222 |
18 | 342844 | 7331 | 4023 |
19 | 70 | 4 | 4 |
| 44089920 | 920985 | 467424 |
Superflips edges:
d | pos | M | M+inv |
14 | 4872 | 103 | 54 |
15 | 51216 | 1071 | 548 |
16 | 539792 | 11277 | 5727 |
17 | 6053450 | 126347 | 63806 |
18 | 29140880 | 608273 | 307613 |
19 | 8298629 | 173861 | 89626 |
20 | 1081 | 53 | 50 |
| 44089920 | 920985 | 467424 |
Pons Asinorums and Superflips edges:
d | pos | M | M+inv |
14 | 1344 | 28 | 14 |
15 | 18216 | 381 | 200 |
16 | 345328 | 7221 | 3677 |
17 | 4490004 | 93668 | 47308 |
18 | 30168301 | 629581 | 318152 |
19 | 9066419 | 190085 | 98053 |
20 | 308 | 21 | 20 |
| 44089920 | 920985 | 467424 |
These are the result of a program I wrote that attempts to solve a bunch of cubes at once, that share something in common (in this case, a given position of the edges).
It's remarkable to me how much the peaks of the distributions are shifted between the four.
If nothing else, this just shows that if there is a distance-21 cube, it does not have the edges in an M-symmetric position.